\
This version of BIP! Finder aims to ease the exploration of COVID-19-related literature by enabling ranking articles based on various impact metrics.
Last Update: 18 - 01 - 2023 (628506 entries)
Title | Venue | Year | Impact | Source | |
---|---|---|---|---|---|
151 | SARS-CoV-2 pandemic and research gaps: Understanding SARS-CoV-2 interaction with the ACE2 receptor and implications for therapy The COVID-19 pandemic is an emerging threat to global public health. While our current understanding of COVID-19 pathogenesis is limited, a better understanding will help us develop efficacious treatment and prevention strategies for COVID-19. One potential therapeutic target is angiotensin converting enzyme 2 (ACE2). ACE2 primarily catalyzes the conversion of angiotensin I (Ang I) to a nonapeptide angiotensin or the conversion of angiotensin II (Ang II) to angiotensin 1-7 (Ang 1-7) and has direct effects on cardiac function and multiple organs via counter-regulation of the renin-angiotensin system (RAS). Significant to COVID-19, ACE2 is postulated to serve as a major entry receptor for SARS-CoV-2 in human cells, as it does for SARS-CoV. Many infected individuals develop COVID-19 with fever, cough, and shortness of breath that can progress to pneumonia. Disease progression promotes the activation of immune cells, platelets, and coagulation pathways that can lead to multiple organ failure and death. ACE2 is expressed by epithelial cells of the lungs at high level, a major target of the disease, as seen in post-mortem lung tissue of patients who died with COVID-19, which reveals diffuse alveolar damage with cellular fibromyxoid exudates bilaterally. Comparatively, ACE2 is expressed at low level by vascular endothelial cells of the heart and kidney but may also be targeted by the virus in severe COVID-19 cases. Interestingly, SARS-CoV-2 infection downregulates ACE2 expression, which may also play a critical pathogenic role in COVID-19. Importantly, targeting ACE2/Ang 1-7 axis and blocking ACE2 interaction with the S protein of SARS-CoV-2 to curtail SARS-CoV-2 infection are becoming very attractive therapeutics potential for treatment and prevention of COVID-19. Here, we will discuss the following subtopics: 1) ACE2 as a receptor of SARS-CoV-2; 2) clinical and pathological features of COVID-19; 3) role of ACE2 in the infection and pathogenesis of SARS; 4) potential pathogenic role of ACE2 in COVID-19; 5) animal models for pathological studies and therapeutics; and 6) therapeutics development for COVID-19. | Theranostics | 2020 | LitCov and CORD-19 | |
152 | Mental capacity legislation and communication disability: A cross-sectional survey exploring the impact of the COVID-19 pandemic on the provision of specialist decision-making support by UK SLTs N/A | Int J Lang Commun Disord | 2022 | LitCov and CORD-19 | |
153 | Effect of COVID-19 pandemic on provision of sexual and reproductive health services in primary health facilities in Nigeria: a cross-sectional study BACKGROUND: Nigeria, like many other countries, has been severely affected by the COVID-19 pandemic. While efforts have been devoted to curtailing the disease, a major concern has been its potential effects on the delivery and utilization of reproductive health care services in the country. The objective of the study was to investigate the extent to which the COVID-19 pandemic and related lockdowns had affected the provision of essential reproductive, maternal, child, and adolescent health (RMCAH) services in primary health care facilities across the Nigerian States. METHODS: This was a cross-sectional study of 307 primary health centres (PHCs) in 30 Local Government Areas in 10 States, representing the six geopolitical regions of the country. A semi-structured interviewer-administered questionnaire was used to obtain data on issues relating to access and provision of RMCAH services before, during and after COVID-19 lockdowns from the head nurses/midwives in the facilities. The questionnaire was entered into Open Data Kit mounted on smartphones. Data were analysed using frequency and percentage, summary statistics, and Kruskal–Wallis test. RESULTS: Between 76 and 97% of the PHCS offered RMCAH services before the lockdown. Except in antenatal, delivery and adolescent care, there was a decline of between 2 and 6% in all the services during the lockdown and up to 10% decline after the lockdown with variation across and within States. During the lockdown. Full-service delivery was reported by 75.2% whereas 24.8% delivered partial services. There was a significant reduction in clients’ utilization of the services during the lockdown, and the difference between States before the pandemic, during, and after the lockdown. Reported difficulties during the lockdown included stock-out of drugs (25.7%), stock-out of contraceptives (25.1%), harassment by the law enforcement agents (76.9%), and transportation difficulties (55.8%). Only 2% of the PHCs reported the availability of gowns, 18% had gloves, 90.1% had hand sanitizers, and a temperature checker was available in 94.1%. Slightly above 10% identified clients with symptoms of COVID-19. CONCLUSIONS: The large proportion of PHCs who provided RMCAH services despite the lockdown demonstrates resilience. Considering the several difficulties reported, and the limited provision of primary protective equipment more effort by the government and non-governmental agencies is recommended to strengthen delivery of sexual and reproductive health in primary health centres in Nigeria during the pandemic. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12978-021-01217-5. | Reprod Health | 2021 | LitCov and CORD-19 | |
154 | Epistasis at the SARS-CoV-2 Receptor-Binding Domain Interface and the Propitiously Boring Implications for Vaccine Escape At the time of this writing, December 2021, potential emergence of vaccine escape variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a grave global concern. The interface between the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) protein and the host receptor (ACE2) overlaps the binding site of principal neutralizing antibodies (NAb), limiting the repertoire of viable mutations. Nonetheless, variants with multiple RBD mutations have risen to dominance. Nonadditive, epistatic relationships among RBD mutations are apparent, and assessing the impact of such epistasis on the mutational landscape, particularly the risk of vaccine escape, is crucial. We employed protein structure modeling using Rosetta to compare the effects of all single mutants at the RBD-NAb and RBD-ACE2 interfaces for the wild type and Delta, Gamma, and Omicron variants. Overall, epistasis at the RBD interface appears to be limited, and the effects of most multiple mutations are additive. Epistasis at the Delta variant interface weakly stabilizes NAb interaction relative to ACE2 interaction, whereas in Gamma, epistasis more substantially destabilizes NAb interaction. Despite bearing many more RBD mutations, the epistatic landscape of Omicron closely resembles that of Gamma. Thus, although Omicron poses new risks not observed with Delta, structural constraints on the RBD appear to hamper continued evolution toward more complete vaccine escape. The modest ensemble of mutations relative to the wild type that are currently known to reduce vaccine efficacy is likely to contain the majority of all possible escape mutations for future variants, predicting the continued efficacy of the existing vaccines. | mBio | 2022 | LitCov and CORD-19 | |
155 | Induction of High Levels of Specific Humoral and Cellular Responses to SARS-CoV-2 After the Administration of Covid-19 mRNA Vaccines Requires Several Days OBJECTIVES: In the context of the Covid-19 pandemic, the fast development of vaccines with efficacy of around 95% preventing Covid-19 illness provides a unique opportunity to reduce the mortality associated with the pandemic. However, in the absence of efficacious prophylactic medications and few treatments for this infection, the induction of a fast and robust protective immunity is required for effective disease control, not only to prevent the disease but also the infection and shedding/transmission. The objective of our study was to analyze the level of specific humoral and cellular T-cell responses against the spike protein of SARS-CoV-2 induced by two mRNA-based vaccines (BNT162b2 and mRNA-1273), but also how long it takes after vaccination to induce these protective humoral and cellular immune responses. METHODS: We studied in 40 healthy (not previously infected) volunteers vaccinated with BNT162b2 or mRNA-1273 vaccines the presence of spike-specific IgG antibodies and SARS-CoV-2-specific T cells at 3, 7 and 14 days after receiving the second dose of the vaccine. The specific T-cell response was analyzed stimulating fresh whole blood from vaccinated volunteers with SARS-CoV-2 peptides and measuring the release of cytokines secreted by T cells in response to SARS-CoV-2 stimulation. RESULTS: Our results indicate that the immunization capacity of both vaccines is comparable. However, although both BNT162b2 and mRNA-1273 vaccines can induce early B-cell and T-cell responses, these vaccine-mediated immune responses do not reach their maximum values until 14 days after completing the vaccination schedule. CONCLUSION: This refractory period in the induction of specific immunity observed after completing the vaccination could constitute a window of higher infection risk, which could explain some emerging cases of SARS-CoV-2 infection in vaccinated people. | Front Immunol | 2021 | LitCov and CORD-19 | |
156 | Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa and the UK BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 10(10) viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; p(interaction)=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D’Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca. | Lancet | 2021 | LitCov and CORD-19 | |
157 | Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial BACKGROUND: The ongoing COVID-19 pandemic warrants accelerated efforts to test vaccine candidates. We aimed to assess the safety and immunogenicity of an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine candidate, BBIBP-CorV, in humans. METHODS: We did a randomised, double-blind, placebo-controlled, phase 1/2 trial at Shangqiu City Liangyuan District Center for Disease Control and Prevention in Henan Province, China. In phase 1, healthy people aged 18–80 years, who were negative for serum-specific IgM/IgG antibodies against SARS-CoV-2 at the time of screening, were separated into two age groups (18–59 years and ≥60 years) and randomly assigned to receive vaccine or placebo in a two-dose schedule of 2 μg, 4 μg, or 8 μg on days 0 and 28. In phase 2, healthy adults (aged 18–59 years) were randomly assigned (1:1:1:1) to receive vaccine or placebo on a single-dose schedule of 8 μg on day 0 or on a two-dose schedule of 4 μg on days 0 and 14, 0 and 21, or 0 and 28. Participants within each cohort were randomly assigned by stratified block randomisation (block size eight) and allocated (3:1) to receive vaccine or placebo. Group allocation was concealed from participants, investigators, and outcome assessors. The primary outcomes were safety and tolerability. The secondary outcome was immunogenicity, assessed as the neutralising antibody responses against infectious SARS-CoV-2. This study is registered with www.chictr.org.cn, ChiCTR2000032459. FINDINGS: In phase 1, 192 participants were enrolled (mean age 53·7 years [SD 15·6]) and were randomly assigned to receive vaccine (2 μg [n=24], 4 μg [n=24], or 8 μg [n=24] for both age groups [18–59 years and ≥60 years]) or placebo (n=24). At least one adverse reaction was reported within the first 7 days of inoculation in 42 (29%) of 144 vaccine recipients. The most common systematic adverse reaction was fever (18–59 years, one [4%] in the 2 μg group, one [4%] in the 4 μg group, and two [8%] in the 8 μg group; ≥60 years, one [4%] in the 8 μg group). All adverse reactions were mild or moderate in severity. No serious adverse event was reported within 28 days post vaccination. Neutralising antibody geometric mean titres were higher at day 42 in the group aged 18–59 years (87·7 [95% CI 64·9–118·6], 2 μg group; 211·2 [158·9–280·6], 4 μg group; and 228·7 [186·1–281·1], 8 μg group) and the group aged 60 years and older (80·7 [65·4–99·6], 2 μg group; 131·5 [108·2–159·7], 4 μg group; and 170·87 [133·0–219·5], 8 μg group) compared with the placebo group (2·0 [2·0–2·0]). In phase 2, 448 participants were enrolled (mean age 41·7 years [SD 9·9]) and were randomly assigned to receive the vaccine (8 μg on day 0 [n=84] or 4 μg on days 0 and 14 [n=84], days 0 and 21 [n=84], or days 0 and 28 [n=84]) or placebo on the same schedules (n=112). At least one adverse reaction within the first 7 days was reported in 76 (23%) of 336 vaccine recipients (33 [39%], 8 μg day 0; 18 [21%], 4 μg days 0 and 14; 15 [18%], 4 μg days 0 and 21; and ten [12%], 4 μg days 0 and 28). One placebo recipient in the 4 μg days 0 and 21 group reported grade 3 fever, but was self-limited and recovered. All other adverse reactions were mild or moderate in severity. The most common systematic adverse reaction was fever (one [1%], 8 μg day 0; one [1%], 4 μg days 0 and 14; three [4%], 4 μg days 0 and 21; two [2%], 4 μg days 0 and 28). The vaccine-elicited neutralising antibody titres on day 28 were significantly greater in the 4 μg days 0 and 14 (169·5, 95% CI 132·2–217·1), days 0 and 21 (282·7, 221·2–361·4), and days 0 and 28 (218·0, 181·8–261·3) schedules than the 8 μg day 0 schedule (14·7, 11·6–18·8; all p<0·001). INTERPRETATION: The inactivated SARS-CoV-2 vaccine, BBIBP-CorV, is safe and well tolerated at all tested doses in two age groups. Humoral responses against SARS-CoV-2 were induced in all vaccine recipients on day 42. Two-dose immunisation with 4 μg vaccine on days 0 and 21 or days 0 and 28 achieved higher neutralising antibody titres than the single 8 μg dose or 4 μg dose on days 0 and 14. FUNDING: National Program on Key Research Project of China, National Mega projects of China for Major Infectious Diseases, National Mega Projects of China for New Drug Creation, and Beijing Science and Technology Plan. | Lancet Infect Dis | 2020 | LitCov and CORD-19 | |
158 | Psychological Distress and Coronavirus Fears During the Initial Phase of the COVID-19 Pandemic in the United States N/A | J Ment Health Policy Econ | 2020 | LitCov and CORD-19 | |
159 | Risk Factors for Hospitalization, Mechanical Ventilation, or Death Among 10 131 US Veterans With SARS-CoV-2 Infection IMPORTANCE: Identifying independent risk factors for adverse outcomes in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can support prognostication, resource utilization, and treatment. OBJECTIVE: To identify excess risk and risk factors associated with hospitalization, mechanical ventilation, and mortality in patients with SARS-CoV-2 infection. DESIGN, SETTING, AND PARTICIPANTS: This longitudinal cohort study included 88 747 patients tested for SARS-CoV-2 nucleic acid by polymerase chain reaction between Feburary 28 and May 14, 2020, and followed up through June 22, 2020, in the Department of Veterans Affairs (VA) national health care system, including 10 131 patients (11.4%) who tested positive. EXPOSURES: Sociodemographic characteristics, comorbid conditions, symptoms, and laboratory test results. MAIN OUTCOMES AND MEASURES: Risk of hospitalization, mechanical ventilation, and death were estimated in time-to-event analyses using Cox proportional hazards models. RESULTS: The 10 131 veterans with SARS-CoV-2 were predominantly male (9221 [91.0%]), with diverse race/ethnicity (5022 [49.6%] White, 4215 [41.6%] Black, and 944 [9.3%] Hispanic) and a mean (SD) age of 63.6 (16.2) years. Compared with patients who tested negative for SARS-CoV-2, those who tested positive had higher rates of 30-day hospitalization (30.4% vs 29.3%; adjusted hazard ratio [aHR], 1.13; 95% CI, 1.08-1.13), mechanical ventilation (6.7% vs 1.7%; aHR, 4.15; 95% CI, 3.74-4.61), and death (10.8% vs 2.4%; aHR, 4.44; 95% CI, 4.07-4.83). Among patients who tested positive for SARS-CoV-2, characteristics significantly associated with mortality included older age (eg, ≥80 years vs <50 years: aHR, 60.80; 95% CI, 29.67-124.61), high regional COVID-19 disease burden (eg, ≥700 vs <130 deaths per 1 million residents: aHR, 1.21; 95% CI, 1.02-1.45), higher Charlson comorbidity index score (eg, ≥5 vs 0: aHR, 1.93; 95% CI, 1.54-2.42), fever (aHR, 1.51; 95% CI, 1.32-1.72), dyspnea (aHR, 1.78; 95% CI, 1.53-2.07), and abnormalities in the certain blood tests, which exhibited dose-response associations with mortality, including aspartate aminotransferase (>89 U/L vs ≤25 U/L: aHR, 1.86; 95% CI, 1.35-2.57), creatinine (>3.80 mg/dL vs 0.98 mg/dL: aHR, 3.79; 95% CI, 2.62-5.48), and neutrophil to lymphocyte ratio (>12.70 vs ≤2.71: aHR, 2.88; 95% CI, 2.12-3.91). With the exception of geographic region, the same covariates were independently associated with mechanical ventilation along with Black race (aHR, 1.52; 95% CI, 1.25-1.85), male sex (aHR, 2.07; 95% CI, 1.30-3.32), diabetes (aHR, 1.40; 95% CI, 1.18-1.67), and hypertension (aHR, 1.30; 95% CI, 1.03-1.64). Notable characteristics that were not significantly associated with mortality in adjusted analyses included obesity (body mass index ≥35 vs 18.5-24.9: aHR, 0.97; 95% CI, 0.77-1.21), Black race (aHR, 1.04; 95% CI, 0.88-1.21), Hispanic ethnicity (aHR, 1.03; 95% CI, 0.79-1.35), chronic obstructive pulmonary disease (aHR, 1.02; 95% CI, 0.88-1.19), hypertension (aHR, 0.95; 95% CI, 0.81-1.12), and smoking (eg, current vs never: aHR, 0.87; 95% CI, 0.67-1.13). Most deaths in this cohort occurred in patients with age of 50 years or older (63.4%), male sex (12.3%), and Charlson Comorbidity Index score of at least 1 (11.1%). CONCLUSIONS AND RELEVANCE: In this national cohort of VA patients, most SARS-CoV-2 deaths were associated with older age, male sex, and comorbidity burden. Many factors previously reported to be associated with mortality in smaller studies were not confirmed, such as obesity, Black race, Hispanic ethnicity, chronic obstructive pulmonary disease, hypertension, and smoking. | JAMA Netw Open | 2020 | LitCov and CORD-19 | |
160 | SARS-CoV-2 variant-specific replicating RNA vaccines protect from disease following challenge with heterologous variants of concern Despite mass public health efforts, the SARS-CoV2 pandemic continues as of late 2021 with resurgent case numbers in many parts of the world. The emergence of SARS-CoV2 variants of concern (VoCs) and evidence that existing vaccines that were designed to protect from the original strains of SARS-CoV-2 may have reduced potency for protection from infection against these VoC is driving continued development of second-generation vaccines that can protect against multiple VoC. In this report, we evaluated an alphavirus-based replicating RNA vaccine expressing Spike proteins from the original SARS-CoV-2 Alpha strain and recent VoCs delivered in vivo via a lipid inorganic nanoparticle. Vaccination of both mice and Syrian Golden hamsters showed that vaccination induced potent neutralizing titers against each homologous VoC but reduced neutralization against heterologous challenges. Vaccinated hamsters challenged with homologous SARS-CoV2 variants exhibited complete protection from infection. In addition, vaccinated hamsters challenged with heterologous SARS-CoV-2 variants exhibited significantly reduced shedding of infectious virus. Our data demonstrate that this vaccine platform can be updated to target emergent VoCs, elicits significant protective immunity against SARS-CoV2 variants and supports continued development of this platform. | Elife | 2022 | LitCov and CORD-19 | |
161 | Screening of healthcare workers for SARS-CoV-2 highlights the role of asymptomatic carriage in COVID-19 transmission Significant differences exist in the availability of healthcare worker (HCW) SARS-CoV-2 testing between countries, and existing programmes focus on screening symptomatic rather than asymptomatic staff. Over a 3 week period (April 2020), 1032 asymptomatic HCWs were screened for SARS-CoV-2 in a large UK teaching hospital. Symptomatic staff and symptomatic household contacts were additionally tested. Real-time RT-PCR was used to detect viral RNA from a throat+nose self-swab. 3% of HCWs in the asymptomatic screening group tested positive for SARS-CoV-2. 17/30 (57%) were truly asymptomatic/pauci-symptomatic. 12/30 (40%) had experienced symptoms compatible with coronavirus disease 2019 (COVID-19)>7 days prior to testing, most self-isolating, returning well. Clusters of HCW infection were discovered on two independent wards. Viral genome sequencing showed that the majority of HCWs had the dominant lineage B∙1. Our data demonstrates the utility of comprehensive screening of HCWs with minimal or no symptoms. This approach will be critical for protecting patients and hospital staff. | Elife | 2020 | LitCov and CORD-19 | |
162 | Barriers and facilitators to online medical and nursing education during the COVID-19 pandemic: perspectives from international students from low- and middle-income countries and their teaching staff BACKGROUND: The COVID-19 pandemic posed a huge challenge to the education systems worldwide, forcing many countries to provisionally close educational institutions and deliver courses fully online. The aim of this study was to explore the quality of the online education in China for international medical and nursing students from low- and middle-income countries (LMICs) as well as the factors that influenced their satisfaction with online education during the COVID-19 pandemic. METHODS: Questionnaires were developed and administered to 316 international medical and nursing students and 120 teachers at a university in China. The Chi-square test was used to detect the influence of participants’ personal characteristics on their satisfaction with online education. The Kruskal–Wallis rank-sum test was employed to identify the negative and positive factors influencing the online education satisfaction. A binary logistic regression model was performed for multiple-factor analysis to determine the association of the different categories of influential factors—crisis-, learner-, instructor-, and course-related categories, with the online education satisfaction. RESULTS: Overall, 230 students (response rate 72.8%) and 95 teachers (response rate 79.2%) completed the survey. It was found that 36.5% of students and 61.1% of teachers were satisfied with the online education. Teachers’ professional title, students’ year of study, continent of origin and location of current residence significantly influenced the online education satisfaction. The most influential barrier for students was the severity of the COVID-19 situation and for teachers it was the sense of distance. The most influential facilitating factor for students was a well-accomplished course assignment and for teachers it was the successful administration of the online courses. CONCLUSIONS: Several key factors have been identified that affected the attitudes of international health science students from LMICs and their teachers towards online education in China during the COVID-19 pandemic. To improve the online education outcome, medical schools are advised to promote the facilitating factors and cope with the barriers, by providing support for students and teaching faculties to deal with the anxiety caused by the pandemic, caring for the state of mind of in-China students away from home, maintaining the engagement of out-China students studying from afar and enhancing collaborations with overseas institutions to create practice opportunities at students’ local places. | Hum Resour Health | 2021 | LitCov and CORD-19 | |
163 | Evaluation of the SARS-CoV-2 Antibody Response to the BNT162b2 Vaccine in Patients Undergoing Hemodialysis IMPORTANCE: Patients undergoing hemodialysis have a high mortality rate associated with COVID-19, and this patient population often has a poor response to vaccinations. Randomized clinical trials for COVID-19 vaccines included few patients with kidney disease; therefore, vaccine immunogenicity is uncertain in this population. OBJECTIVE: To evaluate the SARS-CoV-2 antibody response in patients undergoing chronic hemodialysis following 1 vs 2 doses of BNT162b2 COVID-19 vaccination compared with health care workers serving as controls and convalescent serum. DESIGN, SETTING, AND PARTICIPANTS: A prospective, single-center cohort study was conducted between February 2 and April 17, 2021, in Toronto, Ontario, Canada. Participants included 142 patients receiving in-center hemodialysis and 35 health care worker controls. EXPOSURES: BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine. MAIN OUTCOMES AND MEASURES: SARS-CoV-2 IgG antibodies to the spike protein (anti-spike), receptor binding domain (anti-RBD), and nucleocapsid protein (anti-NP). RESULTS: Among the 142 participants undergoing maintenance hemodialysis, 94 (66%) were men; median age was 72 (interquartile range, 62-79) years. SARS-CoV-2 IgG antibodies were measured in 66 patients receiving 1 vaccine dose following a public health policy change, 76 patients receiving 2 vaccine doses, and 35 health care workers receiving 2 vaccine doses. Detectable anti-NP suggestive of natural SARS-CoV-2 infection was detected in 15 of 142 (11%) patients at baseline, and only 3 patients had prior COVID-19 confirmed by reverse transcriptase polymerase chain reaction testing. Two additional patients contracted COVID-19 after receiving 2 doses of vaccine. In 66 patients receiving a single BNT162b2 dose, seroconversion occurred in 53 (80%) for anti-spike and 36 (55%) for anti-RBD by 28 days postdose, but a robust response, defined by reaching the median levels of antibodies in convalescent serum from COVID-19 survivors, was noted in only 15 patients (23%) for anti-spike and 4 (6%) for anti-RBD in convalescent serum from COVID-19 survivors. In patients receiving 2 doses of BNT162b2 vaccine, seroconversion occurred in 69 of 72 (96%) for anti-spike and 63 of 72 (88%) for anti-RBD by 2 weeks following the second dose and median convalescent serum levels were reached in 52 of 72 patients (72%) for anti-spike and 43 of 72 (60%) for anti-RBD. In contrast, all 35 health care workers exceeded the median level of anti-spike and anti-RBD found in convalescent serum 2 to 4 weeks after the second dose. CONCLUSIONS AND RELEVANCE: This study suggests poor immunogenicity 28 days following a single dose of BNT162b2 vaccine in the hemodialysis population, supporting adherence to recommended vaccination schedules and avoiding delay of the second dose in these at-risk individuals. | JAMA Netw Open | 2021 | LitCov and CORD-19 | |
164 | Pre-Vaccine Positivity of SARS-CoV-2 Antibodies in Alberta, Canada during the First Two Waves of the COVID-19 Pandemic We systematically evaluated SARS-CoV-2 IgG positivity in a provincial cohort to understand the local epidemiology of COVID-19 and support evidence-based public health decisions. Residual blood samples were collected for serology testing over 5-day periods monthly from June 2020 to January 2021 from six clinical laboratories across the province of Alberta, Canada. A total of 93,993 individual patient samples were tested with a SARS-CoV-2 nucleocapsid antibody assay with positives confirmed using a spike antibody assay. Population-adjusted SARS-CoV-2 IgG seropositivity was 0.92% (95% confidence interval [CI]: 0.91 to 0.93%) shortly after the first COVID-19 wave in June 2020, increasing to 4.63% (95% CI: 4.61 to 4.65%) amid the second wave in January 2021. There was no significant difference in seropositivity between males and females (1.39% versus 1.27%; P = 0.11). Ages with highest seropositivity were 0 to 9 years (2.71%, 95% CI: 1.64 to 3.78%) followed by 20 to 29 years (1.58%, 95% CI: 1.12 to 2.04%), with the lowest rates seen in those aged 70 to 79 (0.79%, 95% CI: 0.65 to 0.93%) and >80 (0.78%, 95% CI: 0.60 to 0.97%). Compared to the seronegative group, seropositive patients inhabited geographic areas with lower household income ($87,500 versus $97,500; P < 0.001), larger household sizes, and higher proportions of people with education levels of secondary school or lower, as well as immigrants and visible minority groups (all P < 0.05). A total of 53.7% of seropositive individuals were potentially undetected cases with no prior positive COVID-19 nucleic acid test (NAAT). Antibodies were detectable in some patients up to 9 months post positive NAAT result. This seroprevalence study will continue to inform public health decisions by identifying at-risk demographics and geographical areas. IMPORTANCE Using SARS-CoV-2 serology testing, we assessed the proportion of people in Alberta, Canada (population 4.4 million) positive for COVID-19 antibodies, indicating previous infection, during the first two waves of the COVID-19 pandemic (prior to vaccination programs). Linking these results with sociodemographic population data provides valuable information as to which groups of the population are more likely to have been infected with the SARS-CoV-2 virus to help facilitate public health decision-making and interventions. We also compared seropositivity data with previous COVID-19 molecular testing results. Absence of antibody and molecular testing were highly correlated (95% negative concordance). Positive antibody correlation with a previous positive molecular test was low, suggesting the possibility of mild/asymptomatic infection or other reasons leading individuals from seeking medical attention. Our data highlight that the true estimate of population prevalence of COVID-19 is likely best informed by combining data from both serology and molecular testing. | Microbiol Spectr | 2021 | LitCov and CORD-19 | |
165 | Inappropriate risk perception for SARS-CoV-2 infection among Italian HCWs in the eve of COVID-19 pandemic Sir, Italy has been recently involved in the outbreak of severe interstitial pneumonia associated with the previously unknown Coronavirus SARS-CoV-2 (1,2). Even before the notification of the first autochthonous cases, the SARS-CoV-2 associated syndrome (COVID-19) had raised an intense attention in the public opinion (3), with a counterproductive over-abundance of mixed quality information. As even Italian healthcare workers (HCWs) were not spared by subsequent misunderstandings and knowledge gaps during the previous influenza pandemic of 2009 (4), we performed a web-based survey (Google® Modules), specifically aimed to characterize knowledge status and risk perceptions in a sample from participating to 6 Facebook discussion groups (181,684 total unique members at the time of the study). The questionnaire was made available between February 1st and 7th, 2020, i.e. around 2 weeks before the first COVID-19 was officially diagnosed in Italian residents. Overall, the sampled population included 2106 respondents (Table 1), and 39.3% were HCWs. Even though HCWs were more likely to exhibit a better understanding of SARS-CoV-2/COVID-19 related issues (aOR 2.195, 95%CI 1.809 to 2.664), they were not exempt for misunderstandings, particularly on actual incidence and lethality of COVID-19. Interestingly, most of respondents were aware of the main clinical features of COVID-19, with HCWs more frequently acknowledging that the COVID-19 may run pauci- or even asymptomatic (86.3% vs. 79.1%), resembling an Influenza-Like Illness (i.e. fever, cough, headache, etc.), with a potential latency up to 14 days (85·9% vs· 80·3%), eventually spreading by droplets (98.5% vs. 92.7%) rather through running water (92.3% vs· 79.8%), or blood/body fluids (88.0% vs. 70.4%). Retrospectively, the assessment of preventive measures and risk perception appears somewhat worrisome. For instance, while HCWs were more likely to acknowledge as an appropriate preventive measure wearing a filtering mask (i.e. N95/FFP2/3 mask; aOR 2.296, 95%CI 1.507 to 3.946), around ¼ of HCWs failed to recognize the importance of such personal protective equipment, while 7.4% felt as appropriate the wearing of a surgical mask. Moreover, not only COVID-19 was appropriately acknowledged as a severe disease by only 62.0% of respondents, with no differences between HCWs and non-HCWs, but an even smaller share (i.e. 8.0%) reported any concern for being infected by SARS-CoV-2 in Italy. In fact, at the time of the survey SARS-CoV-2 was more properly associated with international travelers (26.7%). Our results are therefore of certain interests for several reasons. First at all, early epidemiological reports on the Italian cases of COVID-19 hint towards some failures in the initial management of incident cases (5-6). In fact, in our survey a large share of respondents substantially overlooked the risk to interact with SARS-CoV-2 positive subjects, that was otherwise perceived as a not-so-severe disease (i.e. nothing more than a seasonal flu, as often described in some social media) (7). Moreover, around a 1/3 of HCWs participating to the study presumptively did not use proper personal protective equipment for the airways interacting with possible COVID-19 cases, either underestimating the infection risk or being unable to recognize early symptoms. Actually, the base of evidence shared by participants at the time of the study substantially ignored that COVID-19 may be characterized by dermatologic and gastro-intestinal symptoms (8-9). As most of infections may be actually pauci- or asymptomatic, such early exposure in the healthcare settings may have contributed to the quick spreading of SARS-CoV-2 epidemic in Northern Italy. Therefore, despite the intrinsic limits of a convenience sampling, web-based survey (10), our study stresses the importance to improve the overall quality of information on COVID-19 conveyed not only in HCWs, but also in the general population. Moreover, our data may contribute to clarify the early stages of SARS-CoV-2 pandemic in Italy. | Acta Biomed | 2020 | LitCov and CORD-19 | |
166 | Seroresponse to SARS-CoV-2 Vaccines among Maintenance Dialysis Patients over 6 Months N/A | Clin J Am Soc Nephrol | 2022 | LitCov and CORD-19 | |
167 | Neutralizing antibodies to SARS-CoV-2 Omicron variant after third mRNA vaccination in Healthcare workers and elderly subjects The emergence of SARS‐CoV‐2 Omicron variant (B.1.1.529) with major spike protein mutations has raised concern over potential neutralization escape and breakthrough infections among vaccinated and previously SARS‐CoV‐2‐infected subjects. We measured cross‐protective antibodies against variants in health care workers (HCW, n = 20) and nursing home residents (n = 9) from samples collected at 1–2 months, following the booster (3rd) dose. We also assessed the antibody responses in subjects infected before the Omicron era (n = 38) with subsequent administration of a single mRNA vaccine dose. Following booster vaccination, HCWs had high IgG antibody concentrations to the spike protein and neutralizing antibodies (NAb) were detectable against all variants. IgG concentrations among the elderly remained lower, and some lacked NAbs against the Beta and Omicron variants. NAb titers were significantly reduced against Delta, Beta, and Omicron compared to WT virus regardless of age. Vaccination induced high IgG concentrations and variable titers of cross‐reactive NAbs in previously infected subjects, whereas NAb titers against Omicron were barely detectable 1 month postinfection. High IgG concentrations with cross‐protective neutralizing activity were detected after three Coronavirus Disease 2019 (COVID‐19) vaccine doses in HCWs. However, lower NAb titers seen in the frail elderly suggest inadequate protection against Omicron breakthrough infections, yet protection against severe COVID‐19 is expected. | Eur J Immunol | 2022 | LitCov and CORD-19 | |
168 | Double-Blind, Randomized, Placebo-Controlled Phase III Clinical Trial to Evaluate the Efficacy and Safety of treating Healthcare Professionals with the Adsorbed COVID-19 (Inactivated) Vaccine Manufactured by Sinovac-PROFISCOV: A structured summary of a study protocol for a randomised controlled tria OBJECTIVES: To evaluate the efficacy of two doses of the adsorbed vaccine COVID-19 (inactivated) produced by Sinovac in symptomatic individuals, with virological confirmation of COVID-19, two weeks after the completion of the two-dose vaccination regimen, aged 18 years or older who work as health professionals providing care to patients with possible or confirmed COVID-19. To describe the occurrence of adverse reactions associated with the administration of each of two doses of the adsorbed vaccine COVID-19 (inactivated) produced by Sinovac up to one week after vaccination in Adults (18-59 years of age) and Elderly (60 years of age or more). TRIAL DESIGN: This is a Phase III, randomized, multicenter, endpoint driven, double-blind, placebo-controlled clinical trial to assess the efficacy and safety of the adsorbed vaccine COVID-19 (inactivated) produced by Sinovac. The adsorbed vaccine COVID-19 (inactivated) produced by Sinovac (product under investigation) will be compared to placebo. Voluntary participants will be randomized to receive two intramuscular doses of the investigational product or the placebo, in a 1: 1 ratio, stratified by age group (18 to 59 years and 60 years or more) and will be monitored for one year by active surveillance of COVID-19. Two databases will be established according to the age groups: one for adults (18-59 years) and one for the elderly (60 years of age or older). The threshold to consider the vaccine efficacious will be to reach a protection level of at least 50%, as proposed by the World Health Organization and the FDA. Success in this criterion will be defined by sequential monitoring with adjustment of the lower limit of the 95% confidence interval above 30% for the primary efficacy endpoint. PARTICIPANTS: Healthy participants and / or participants with clinically controlled disease, of both genders, 18 years of age or older, working as health professionals performing care in units specialized in direct contact with people with possible or confirmed cases of COVID-19. Participation of pregnant women and those who are breastfeeding, as well as those intending to become pregnant within three months after vaccination will not be allowed. Participants will only be included after signing the voluntary Informed Consent Form and ensuring they undergo screening evaluation and conform to all the inclusion and exclusion criteria. All the clinical sites are located in Brazil. INTERVENTION AND COMPARATOR: Experimental intervention: The vaccine was manufactured by Sinovac Life Sciences (Beijing, China) and contains 3 μg/0.5 mL (equivalent to 600 SU per dose) of inactivated SARS-CoV-2 virus, and aluminium hydroxide as adjuvant. Control comparator: The placebo contains aluminium hydroxide in a 0.5 mL solution The schedule of both, experimental intervention and placebo is two 0.5 mL doses IM (deltoid) with a two week interval. MAIN OUTCOMES: The primary efficacy endpoint is the incidence of symptomatic cases of virologically confirmed COVID-19 two weeks after the second vaccination. The virological diagnosis will be confirmed by detection of SARS-CoV-2 nucleic acid in a clinical sample. The primary safety endpoint is the frequency of solicited and unsolicited local and systemic adverse reactions during the period of one week after vaccination according to age group in adult (18-59 years old) and elder (60 years of age or older) subjects. Adverse reactions are defined as adverse events that have a reasonable causal relationship to vaccination. RANDOMISATION: There will be two randomization lists, one for each age group, based on the investigational products to be administered, i.e., vaccine or placebo at a 1: 1 ratio. Each randomization list will be made to include up to 11,800 (18-59 year-old) adults, and 1,260 elderly (60 y-o and older) participants, the maximum number of participants needed per age group. An electronic central randomization system will be used to designate the investigational product that each participant must receive. BLINDING (MASKING): This trial is designed as a double-blind study to avoid introducing bias in the evaluation of efficacy, safety and immunogenicity. The clinical care team, the professionals responsible for the vaccination and the participants will not know which investigational product will be administered. Only pharmacists or nurses in the study who are responsible for the randomization, separation and blinding of the investigational product will have access to unblinded information. The sponsor's operational team will also remain blind. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The total number of participants needed to evaluate efficacy, 13,060 participants, satisfies the needed sample size calculated to evaluate safety. Therefore, the total number obtained for efficacy will be the number retained for the study. Up to 13,060 participants are expected to enter the study, with up to 11,800 participants aged 18 to 59 years and 1,260 elderly participants aged 60 and over. Half of the participants of each group will receive the experimental vaccine and half of them will receive the placebo. The recruitment of participants may be modified as recommended by the Data Safety Monitoring Committee at time of the interim unblinded analysis or blind assessment of the COVID-19 attack rate during the study. TRIAL STATUS: Protocol version 2.0 – 24-Aug-2020. Recruitment started on July 21(st), 2020. The recruitment is expected to conclude in October 2020. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT0445659. Registry on 2 July 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. | Trials | 2020 | LitCov and CORD-19 | |
169 | Thoracic imaging tests for the diagnosis of COVID-19 N/A | Cochrane Database Syst Rev | 2020 | LitCov and CORD-19 | |
170 | Surveillance Metrics of SARS-CoV-2 Transmission in Central Asia: Longitudinal Trend Analysis BACKGROUND: SARS-CoV-2, the virus that caused the global COVID-19 pandemic, has severely impacted Central Asia; in spring 2020, high numbers of cases and deaths were reported in this region. The second wave of the COVID-19 pandemic is currently breaching the borders of Central Asia. Public health surveillance is necessary to inform policy and guide leaders; however, existing surveillance explains past transmissions while obscuring shifts in the pandemic, increases in infection rates, and the persistence of the transmission of COVID-19. OBJECTIVE: The goal of this study is to provide enhanced surveillance metrics for SARS-CoV-2 transmission that account for weekly shifts in the pandemic, including speed, acceleration, jerk, and persistence, to better understand the risk of explosive growth in each country and which countries are managing the pandemic successfully. METHODS: Using a longitudinal trend analysis study design, we extracted 60 days of COVID-19–related data from public health registries. We used an empirical difference equation to measure the daily number of cases in the Central Asia region as a function of the prior number of cases, level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: COVID-19 transmission rates were tracked for the weeks of September 30 to October 6 and October 7-13, 2020, in Central Asia. The region averaged 11,730 new cases per day for the first week and 14,514 for the second week. Infection rates increased across the region from 4.74 per 100,000 persons to 5.66. Russia and Turkey had the highest 7-day moving averages in the region, with 9836 and 1469, respectively, for the week of October 6 and 12,501 and 1603, respectively, for the week of October 13. Russia has the fourth highest speed in the region and continues to have positive acceleration, driving the negative trend for the entire region as the largest country by population. Armenia is experiencing explosive growth of COVID-19; its infection rate of 13.73 for the week of October 6 quickly jumped to 25.19, the highest in the region, the following week. The region overall is experiencing increases in its 7-day moving average of new cases, infection, rate, and speed, with continued positive acceleration and no sign of a reversal in sight. CONCLUSIONS: The rapidly evolving COVID-19 pandemic requires novel dynamic surveillance metrics in addition to static metrics to effectively analyze the pandemic trajectory and control spread. Policy makers need to know the magnitude of transmission rates, how quickly they are accelerating, and how previous cases are impacting current caseload due to a lag effect. These metrics applied to Central Asia suggest that the region is trending negatively, primarily due to minimal restrictions in Russia. | J Med Internet Res | 2021 | LitCov and CORD-19 | |
171 | Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR BACKGROUND: The ongoing outbreak of the recently emerged novel coronavirus (2019-nCoV) poses a challenge for public health laboratories as virus isolates are unavailable while there is growing evidence that the outbreak is more widespread than initially thought, and international spread through travellers does already occur. AIM: We aimed to develop and deploy robust diagnostic methodology for use in public health laboratory settings without having virus material available. METHODS: Here we present a validated diagnostic workflow for 2019-nCoV, its design relying on close genetic relatedness of 2019-nCoV with SARS coronavirus, making use of synthetic nucleic acid technology. RESULTS: The workflow reliably detects 2019-nCoV, and further discriminates 2019-nCoV from SARS-CoV. Through coordination between academic and public laboratories, we confirmed assay exclusivity based on 297 original clinical specimens containing a full spectrum of human respiratory viruses. Control material is made available through European Virus Archive – Global (EVAg), a European Union infrastructure project. CONCLUSION: The present study demonstrates the enormous response capacity achieved through coordination of academic and public laboratories in national and European research networks. | Euro Surveill | 2020 | LitCov and CORD-19 | |
172 | Remdesivir for the Treatment of Covid-19-Final Report BACKGROUND: Although several therapeutic agents have been evaluated for the treatment of coronavirus disease 2019 (Covid-19), none have yet been shown to be efficacious. METHODS: We conducted a double-blind, randomized, placebo-controlled trial of intravenous remdesivir in adults hospitalized with Covid-19 with evidence of lower respiratory tract involvement. Patients were randomly assigned to receive either remdesivir (200 mg loading dose on day 1, followed by 100 mg daily for up to 9 additional days) or placebo for up to 10 days. The primary outcome was the time to recovery, defined by either discharge from the hospital or hospitalization for infection-control purposes only. RESULTS: A total of 1063 patients underwent randomization. The data and safety monitoring board recommended early unblinding of the results on the basis of findings from an analysis that showed shortened time to recovery in the remdesivir group. Preliminary results from the 1059 patients (538 assigned to remdesivir and 521 to placebo) with data available after randomization indicated that those who received remdesivir had a median recovery time of 11 days (95% confidence interval [CI], 9 to 12), as compared with 15 days (95% CI, 13 to 19) in those who received placebo (rate ratio for recovery, 1.32; 95% CI, 1.12 to 1.55; P<0.001). The Kaplan-Meier estimates of mortality by 14 days were 7.1% with remdesivir and 11.9% with placebo (hazard ratio for death, 0.70; 95% CI, 0.47 to 1.04). Serious adverse events were reported for 114 of the 541 patients in the remdesivir group who underwent randomization (21.1%) and 141 of the 522 patients in the placebo group who underwent randomization (27.0%). CONCLUSIONS: Remdesivir was superior to placebo in shortening the time to recovery in adults hospitalized with Covid-19 and evidence of lower respiratory tract infection. (Funded by the National Institute of Allergy and Infectious Diseases and others; ACTT-1 ClinicalTrials.gov number, NCT04280705.) | N Engl J Med | 2020 | LitCov and CORD-19 | |
173 | Meaning in Life and Self-Control Buffer Stress in Times of COVID-19: Moderating and Mediating Effects With Regard to Mental Distress BACKGROUND: As evidenced by several studies, mental distress increased substantially during the COVID-19 pandemic. In this period, citizens were asked to exercise a high degree of self-control with regard to personal and social health behavior. At the same time, we witnessed an increase of prosocial acts and shared creative expressions, which are known to serve as sources of meaning. Meaning in life and self-control are acknowledged psychological resources. Especially in times of crisis, meaning in life has been shown to be a crucial factor for resilience and coping. However, threatening and stressful situations can also jeopardize existential security and trigger crises of meaning. The present study aimed to document levels of acute COVID-19 stress and general mental distress in Germany and Austria during the lockdown and in the weeks thereafter. In order to identify potential risk factors related to demographics and living conditions, their associations with COVID-19 stress were analyzed exploratively. The primary objective of the study, however, was to investigate the buffering effect of two psychological resources—meaningfulness and self-control—with regard to the relation between acute COVID-19 stress and general mental distress. Finally, a potential aggravation of mental distress due to the occurrence of crises of meaning was examined. METHOD: A cross-sectional survey was conducted online during lockdown (survey group 1) and the subsequent weeks characterized by eased restrictions (survey group 2). A total of N = 1,538 German-speaking participants completed a questionnaire battery including a novel measure of acute COVID-19 stress, meaningfulness and crisis of meaning (SoMe), self-control (SCS-KD), and a screening of general mental distress, measured by core symptoms of depression and anxiety (PHQ-4). In a first step, associations between living conditions, demographics, and COVID-19 stress were explored. Second, a moderation and a mediation model were tested. Meaningfulness, a measure of presence of meaning in life, as well as self-control were proposed to serve as buffers in a time of crisis, thus moderating the relation between acute COVID-19 stress and general mental distress (double moderation). Crisis of meaning, operationalizing an experienced lack of meaning in life, was proposed to mediate the relationship between acute COVID-19 stress and general mental distress, with an assumed moderation of the association between COVID-19 stress and crisis of meaning by survey group (lockdown versus eased restrictions after lockdown), and a hypothesized moderation of the link between crisis of meaning and general mental distress by self-control (dual moderated mediation). RESULTS: COVID-19 stress was slightly right-skewed. Scores were higher during lockdown than in the weeks thereafter. The rate of clinically significant general mental distress was high, exceeding prevalence rates from both the general population and clinical samples of the time before the pandemic. In the weeks following the lockdown (group 2), general mental distress and crisis of meaning were significantly higher than during lockdown (group 1), whereas meaningfulness and self-control were significantly lower. Demographically, age had the strongest association with COVID-19 stress, with older participants perceiving less acute stress (r = −.21). People who were partnered or married suffered less from COVID-19 stress (η2 = .01). Living alone (η2 = .006), living in a room versus a flat or house (η2 = .008), and being unemployed due to the pandemic (η2 = .008) were related to higher experience of COVID-19 stress. COVID-19 stress and general mental distress were strongly related (r = .53). Both meaningfulness and self-control were negatively associated with general mental distress (r = −.40 and −.36, respectively). They also moderated the relationship between COVID-19 stress and general mental distress: When meaningfulness was high, high COVID-19 stress was related to substantially lower PHQ-4 scores than when meaningfulness was low. The same held for self-control: High scores of self-control were associated with lower PHQ-4 scores especially when COVID-19 stress was high. Crisis of meaning mediated the relationship between COVID-19 stress and PHQ-4. There was a higher likelihood of crises of meaning occurring when COVID-19 stress was high; crisis of meaning, in turn, was associated with general mental distress. Survey group moderated the first path of this mediation, i.e., the relationship between COVID-19 stress and crisis of meaning: High scores of COVID-19 stress were associated more strongly with crisis of meaning in the second survey group (after the lockdown). Self-control moderated the second path, i.e., the relationship between crisis of meaning and PHQ-4: When a crisis of meaning was present, self-control could buffer its effect on general mental distress. CONCLUSIONS: Also in the present study among German-speaking participants, general mental distress was high. Scores were higher after than during the lockdown, indicating an ongoing destabilization for a significant part of the population. People who saw a meaning in their lives and who were capable of self-control reported substantially less mental distress. Meaningfulness and self-control also served as buffers between COVID-19 stress and general mental distress: When COVID-19 stress was high, the presence of meaningfulness and self-control accounted for lower general mental distress. Moreover, people who suffered strongly from COVID-19 stress were more likely to develop a crisis of meaning which, in turn, was associated with higher general mental distress. This suggests that ongoing anxiety and depression might (also) be based on existential struggles. Again here, self-control buffered the impact of crisis of meaning on general mental health. We conclude from these findings that public health policies can support citizens in coping with large-scale crises by enabling experiences of meaningfulness, e.g., through transparent and reliable modes of communicating goals and necessary intermediate steps. Moreover, health professionals are well advised to invite individuals to confront existential questions and struggles, and to encourage them to exercise self-control. The latter can be boosted by keeping higher-order goals salient—which again is inherently linked to an understanding of their meaning. | Front Psychiatry | 2020 | LitCov and CORD-19 | |
174 | Use of COVID-19 Vaccines After Reports of Adverse Events Among Adult Recipients of Janssen (Johnson & Johnson) and mRNA COVID-19 Vaccines (Pfizer-BioNTech and Moderna): Update from the Advisory Committee on Immunization Practices-United States, July 2021 In December 2020, the Food and Drug Administration (FDA) issued Emergency Use Authorizations (EUAs) for Pfizer-BioNTech and Moderna COVID-19 vaccines, and in February 2021, FDA issued an EUA for the Janssen (Johnson & Johnson) COVID-19 vaccine. After each EUA, the Advisory Committee on Immunization Practices (ACIP) issued interim recommendations for vaccine use; currently Pfizer-BioNTech is authorized and recommended for persons aged ≥12 years and Moderna and Janssen for persons aged ≥18 years (1-3). Both Pfizer-BioNTech and Moderna vaccines, administered as 2-dose series, are mRNA-based COVID-19 vaccines, whereas the Janssen COVID-19 vaccine, administered as a single dose, is a recombinant replication-incompetent adenovirus-vector vaccine. As of July 22, 2021, 187 million persons in the United States had received at least 1 dose of COVID-19 vaccine (4); close monitoring of safety surveillance has demonstrated that serious adverse events after COVID-19 vaccination are rare (5,6). Three medical conditions have been reported in temporal association with receipt of COVID-19 vaccines. Two of these (thrombosis with thrombocytopenia syndrome [TTS], a rare syndrome characterized by venous or arterial thrombosis and thrombocytopenia, and Guillain-Barré syndrome [GBS], a rare autoimmune neurologic disorder characterized by ascending weakness and paralysis) have been reported after Janssen COVID-19 vaccination. One (myocarditis, cardiac inflammation) has been reported after Pfizer-BioNTech COVID-19 vaccination or Moderna COVID-19 vaccination, particularly after the second dose; these were reviewed together and will hereafter be referred to as mRNA COVID-19 vaccination. ACIP has met three times to review the data associated with these reports of serious adverse events and has comprehensively assessed the benefits and risks associated with receipt of these vaccines. During the most recent meeting in July 2021, ACIP determined that, overall, the benefits of COVID-19 vaccination in preventing COVID-19 morbidity and mortality outweigh the risks for these rare serious adverse events in adults aged ≥18 years; this balance of benefits and risks varied by age and sex. ACIP continues to recommend COVID-19 vaccination in all persons aged ≥12 years. CDC and FDA continue to closely monitor reports of serious adverse events and will present any additional data to ACIP for consideration. Information regarding risks and how they vary by age and sex and type of vaccine should be disseminated to providers, vaccine recipients, and the public. | MMWR Morb Mortal Wkly Rep | 2021 | LitCov and CORD-19 | |
175 | Neurological manifestations associated with SARS-CoV-2 and other coronaviruses: A narrative review for clinicians INTRODUCTION: The past two decades have been marked by three epidemics linked to emerging coronaviruses. The COVID-19 pandemic highlighted the existence of neurological manifestations associated with SARS-CoV-2 infection and raised the question of the neuropathogenicity of coronaviruses. The aim of this review was to summarize the current data about neurological manifestations and diseases linked to human coronaviruses. MATERIAL AND METHODS: Articles have been identified by searches of PubMed and Google scholar up to September 25, 2020, using a combination of coronavirus and neurology search terms and adding relevant references in the articles. RESULTS: We found five cohorts providing prevalence data of neurological symptoms among a total of 2533 hospitalized COVID-19 patients, and articles focusing on COVID-19 patients with neurological manifestations including a total of 580 patients. Neurological symptoms involved up to 73% of COVID-19 hospitalized patients, and were mostly headache, myalgias and impaired consciousness. Central nervous system (CNS) manifestations reported in COVID-19 were mostly non-specific encephalopathies that represented between 13% and 40% of all neurological manifestations; post-infectious syndromes including acute demyelinating encephalomyelitis (ADEM, n = 13), acute necrotizing encephalopathy (ANE, n = 4), Bickerstaff's encephalitis (n = 5), generalized myoclonus (n = 3) and acute transverse myelitis (n = 7); other encephalitis including limbic encephalitis (n = 9) and miscellaneous encephalitis with variable radiologic findings (n = 26); acute cerebrovascular diseases including ischemic strokes (between 1.3% and 4.7% of COVID-19 patients), hemorrhagic strokes (n = 17), cerebral venous thrombosis (n = 8) and posterior reversible encephalopathy (n = 5). Peripheral nervous system (PNS) manifestations reported in COVID-19 were the following: Guillain–Barré syndrome (n = 31) and variants including Miller Fisher syndrome (n = 3), polyneuritis cranialis (n = 2) and facial diplegia (n = 2); isolated oculomotor neuropathy (n = 6); critical illness myopathy (n = 6). Neuropathological studies in COVID-19 patients demonstrated different patterns of CNS damage, mostly ischemic and hemorrhagic changes with few cases of inflammatory injuries. Only one case suggested SARS-CoV-2 infiltration in endothelial and neural cells. We found 10 case reports or case series describing 22 patients with neurological manifestations associated with other human coronaviruses. Among them we found four MERS patients with ADEM or Bickerstaff's encephalitis, two SARS patients with encephalitis who had a positive SARS-CoV PCR in cerebrospinal fluid, five patients with ischemic strokes associated with SARS, eight MERS patients with critical illness neuromyopathy and one MERS patient with Guillain–Barré Syndrome. An autopsy study on SARS-CoV patients demonstrated the presence of the virus in the brain of eight patients. CONCLUSION: The wide range of neurological manifestations and diseases associated with SARS-CoV-2 is consistent with multiple pathogenic pathways including post-infectious mechanisms, septic-associated encephalopathies, coagulopathy or endothelitis. There was no definite evidence to support direct neuropathogenicity of SARS-CoV-2. | Rev Neurol (Paris) | 2020 | LitCov and CORD-19 | |
176 | Quantitative SARS-CoV-2 Serology in Children With Multisystem Inflammatory Syndrome (MIS-C) N/A | Pediatrics | 2020 | LitCov and CORD-19 | |
177 | Comparison of SARS-CoV-2 anti-spike receptor binding domain IgG antibody responses after CoronaVac, BNT162b2, ChAdOx1 COVID-19 vaccines and a single booster dose: a prospective, longitudinal population-based study BACKGROUND: Vaccination is an efficient strategy to control the COVID-19 pandemic. In north Cyprus, vaccine distribution started with CoronaVac followed by BNT162b2, and ChAdOx1 vaccines. An option to obtain a third booster dose with BNT162b2 or CoronaVac was later offered to people fully inoculated with CoronaVac. There are few simultaneous and comparative real-world antibody data for these three vaccines as well as boosters after CoronaVac vaccination. Our study was aimed at evaluating antibody responses after these vaccination schemes. METHODS: We did a prospective, longitudinal population-based study to measure SARS-CoV-2 anti-spike receptor binding domain (RBD) IgG concentrations, assessed by assaying blood samples collected, in participants in north Cyprus who had received the BNT162b2, ChAdOx1, or CoronaVac vaccine at 1 month and 3 months after the second dose. Participants were recruited when they voluntarily came to the laboratory for testing after vaccination, solicited from health-care access points, or from the general population. We also evaluated antibody responses 1 month after a booster dose of BNT162b2 or CoronaVac after primary CoronaVac regimen. Demographics, baseline characteristics, vaccination reactions, and percentage of antibody responders were collected by phone interviews or directly from the laboratory summarised by vaccine and age group. Antibody levels were compared between groups over time by parametric and non-parametric methods. FINDINGS: Recruitment, follow-up, and data collection was done between March 1 and Sept 30, 2021. BNT162b2 induced the highest seropositivity and anti-spike RBD IgG antibody titres, followed by ChAdOx1, and then by CoronaVac. In addition, the rate of decline of antibodies was fastest with CoronaVac, followed by ChAdOx1, and then by BNT162b2. For the older age group, the rate of seropositivity at 3 months after the second dose was 100% for BNT162b2, 90% for ChAdOx1, and 60% for CoronaVac. In the multivariate repeated measures model, lower antibody titres were also significantly associated with male sex, older age, and time since vaccination. Boosting a two-dose CoronaVac regimen at 6 months with a single BNT162b2 dose led to significantly increased titres of IgG compared with boosting with CoronaVac; for the 60 years and older age group, the geometric mean fold rise in antibody titre after the booster relative to 1 month post-baseline was 7·9 (95% CI 5·8–10·8) in the BNT162b2 boost group versus 2·8 (1·6–5·0) in the CoronaVac group. INTERPRETATION: These longitudinal data can help shape vaccination strategies. Given the low antibody titres and fast decline in the CoronaVac group in individuals 60 years or older, more potent vaccine options could be considered as the primary vaccination or booster dose in these high-risk populations to sustain antibody responses for longer. FUNDING: Crowdfunded in north Cyprus. | Lancet Microbe | 2022 | LitCov and CORD-19 | |
178 | Current Strategies of Antiviral Drug Discovery for COVID-19 SARS-CoV-2 belongs to the family of enveloped, single-strand RNA viruses known as Betacoronavirus in Coronaviridae, first reported late 2019 in China. It has since been circulating world-wide, causing the COVID-19 epidemic with high infectivity and fatality rates. As of the beginning of April 2021, pandemic SARS-CoV-2 has infected more than 130 million people and led to more than 2.84 million deaths. Given the severity of the epidemic, scientists from academia and industry are rushing to identify antiviral strategies to combat the disease. There are several strategies in antiviral drugs for coronaviruses including empirical testing of known antiviral drugs, large-scale phenotypic screening of compound libraries and target-based drug discovery. To date, an increasing number of drugs have been shown to have anti-coronavirus activities in vitro and in vivo, but only remdesivir and several neutralizing antibodies have been approved by the US FDA for treating COVID-19. However, remdesivir’s clinical effects are controversial and new antiviral drugs are still urgently needed. We will discuss the current status of the drug discovery efforts against COVID-19 and potential future directions. With the ever-increasing movability of human population and globalization of world economy, emerging and reemerging viral infectious diseases seriously threaten public health. Particularly the past and ongoing outbreaks of coronaviruses cause respiratory, enteric, hepatic and neurological diseases in infected animals and human (Woo et al., 2009). The human coronavirus (HCoV) strains (HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1) usually cause common cold with mild, self-limiting upper respiratory tract infections. By contrast, the emergence of three deadly human betacoronaviruses, middle east respiratory syndrome coronavirus (MERS) (Zaki et al., 2012), severe acute respiratory syndrome coronavirus (SARS-CoV) (Lee et al., 2003), the SARS-CoV-2 (Jin et al., 2020a) highlight the need to identify new treatment strategies for viral infections. SARS-CoV-2 is the etiological agent of COVID-19 disease named by World Health Organization (WHO) (Zhu N. et al., 2020). This disease manifests as either an asymptomatic infection or a mild to severe pneumonia. This pandemic disease causes extent morbidity and mortality in the whole world, especially regions out of China. Similar to SARS and MERS, the SARS CoV-2 genome encodes four structural proteins, sixteen non-structural proteins (nsp) and accessory proteins. The structural proteins include spike (S), envelope (E), membrane (M), nucleoprotein (N). The spike glycoprotein directly recognizes and engages cellular receptors during viral entry. The four non-structural proteins including papain-like protease (PL(pro)), 3-chymotrypsin-like protease (3CL(pro)), helicase, and RNA-dependent RNA polymerase (RdRp) are key enzymes involved in viral transcription and replication. The spike and the four key enzymes were considered attractive targets to develop antiviral agents (Zumla et al., 2016). The catalytic sites of the four enzymes of SARS-CoV2 share high similarities with SARS CoV and MERS in genomic sequences (Morse et al., 2020). Besides, the structures of the key drug-binding pockets are highly conserved among the three coronaviruses (Morse et al., 2020). Therefore, it follows naturally that existing anti-SARS-CoV and anti-MERS drugs targeting these enzymes can be repurposed for SARS-CoV-2. Based on previous studies in SARS-CoV and MERS-CoV, it is anticipated a number of therapeutics can be used to control or prevent emerging infectious disease COVID-19 (Li and de Clercq, 2020; Wang et al., 2020c; Ita, 2021), these include small-molecule drugs, peptides, and monoclonal antibodies. Given the urgency of the SARS-CoV-2 outbreak, here we discuss the discovery and development of new therapeutics for SARS-CoV-2 infection based on the strategies from which the new drugs are derived. | Front Mol Biosci | 2021 | LitCov and CORD-19 | |
179 | Postvaccination SARS-COV-2 among Healthcare Workers in New Jersey: A Genomic Epidemiological Study Emergence of SARS-CoV-2 with high transmission and immune evasion potential, the so-called variants of concern (VOC), is a major concern. We describe the early genomic epidemiology of SARS-CoV-2 recovered from vaccinated health care professionals (HCP). Our postvaccination COVID-19 symptoms-based surveillance program among HCPs in a 17-hospital network identified all vaccinated HCPs who tested positive for COVID-19 after routine screening or after self-reporting. From 1 January 2021 to 30 April 2021, 23,687 HCPs received either mRNA-1273 or BNT162b2 mRNA vaccine. All available postvaccination SARS-CoV-2 samples and a random collection from nonvaccinated patients during the similar time frame were subjected to VOC screening and whole-genome sequencing (WGS). Sixty-two percent (23,697/37,500) of HCPs received at least one vaccine dose, with 60% (22,458) fully vaccinated. We detected 138 (0.58%, 138/23,697) COVID-19 cases, 105 among partially vaccinated and 33 (0.15%, 33/22,458) among fully vaccinated. Five partially vaccinated required hospitalization, four with supplemental oxygen. VOC screening from 16 fully vaccinated HCPs identified 6 (38%) harboring N501Y and 1 (6%) with E484K polymorphisms; percentage of concurrent nonvaccinated samples was 37% (523/1,404) and 20% (284/1,394), respectively. There was an upward trend from January to April for E484K/Q (3% to 26%) and N501Y (1% to 49%). WGS analysis from vaccinated and nonvaccinated individuals indicated highly congruent phylogenies. We did not detect an increased frequency of any receptor-binding domain (RBD)/N-terminal domain (NTD) polymorphism between groups (P > 0.05). Our results support robust protection by vaccination, particularly among recipients of both doses. Despite VOCs accounting for over 40% of SARS-CoV-2 from fully vaccinated individuals, the genomic diversity appears to proportionally represent VOCs among nonvaccinated populations. IMPORTANCE A number of highly effective vaccines have been developed and deployed to combat the COVID-19 pandemic. The emergence and epidemiological dominance of SARS-CoV-2 mutants with high transmission potential and immune evasion properties, the so-called variants of concern (VOC), continue to be a major concern. Whether these VOCs alter the efficacy of the administered vaccines is of great concern and a critical question to study. We describe the initial genomic epidemiology of SARS-CoV-2 recovered from partial/fully vaccinated health care professionals and probe specifically for VOC enrichment. Our findings support the high level of protection provided by full vaccination despite a steep increase in the prevalence of polymorphisms associated with increased transmission potential (N501Y) and immune evasion (E484K) in the nonvaccinated population. Thus, we do not find evidence of VOC enrichment among vaccinated groups. Overall, the genomic diversity of SARS-CoV-2 recovered postvaccination appears to proportionally represent the observed viral diversity within the community. | Microbiol Spectr | 2021 | LitCov and CORD-19 | |
180 | Association Between Vaccination With BNT162b2 and Incidence of Symptomatic and Asymptomatic SARS-CoV-2 Infections Among Healthcare Workers N/A | JAMA | 2021 | LitCov and CORD-19 | |
181 | COVID-19 pandemic and mental health consequences: Systematic review of the current evidence BACKGROUND: During the COVID-19 pandemic general medical complications have received the most attention, whereas only few studies address the potential direct effect on mental health of SARS-CoV-2 and the neurotropic potential. Furthermore, the indirect effects of the pandemic on general mental health are of increasing concern, particularly since the SARS-CoV-1 epidemic (2002-2003) was associated with psychiatric complications. METHODS: We systematically searched the database Pubmed including studies measuring psychiatric symptoms or morbidities associated with COVID-19 among infected patients and among none infected groups the latter divided in psychiatric patients, health care workers and non-health care workers. RESULTS: A total of 43 studies were included. Out of these, only two studies evaluated patients with confirmed COVID-19 infection, whereas 41 evaluated the indirect effect of the pandemic (2 on patients with preexisting psychiatric disorders, 20 on medical health care workers, and 19 on the general public). 18 of the studies were case-control studies/compared to norm, while 25 of the studies had no control groups. The two studies investigating COVID-19 patients found a high level of post-traumatic stress symptoms (PTSS) (96.2%) and significantly higher level of depressive symptoms (p=0.016). Patients with preexisting psychiatric disorders reported worsening of psychiatric symptoms. Studies investigating health care workers found increased depression/depressive symptoms, anxiety, psychological distress and poor sleep quality. Studies of the general public revealed lower psychological well-being and higher scores of anxiety and depression compared to before COVID-19, while no difference when comparing these symptoms in the initial phase of the outbreak to four weeks later. A variety of factors were associated with higher risk of psychiatric symptoms and/or low psychological well-being including female gender, poor-self-related health and relatives with COVID-19. CONCLUSION: Research evaluating the direct neuropsychiatric consequences and the indirect effects on mental health is highly needed to improve treatment, mental health care planning and for preventive measures during potential subsequent pandemics. | Brain Behav Immun | 2020 | LitCov and CORD-19 | |
182 | Vaccine induced Antibody Responses against SARS-CoV-2 Variants-Of-Concern Six Months after the BNT162b2 COVID-19 mRNA Vaccination The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has raised concern about increased transmissibility, infectivity, and immune evasion from a vaccine and infection-induced immune responses. Although COVID-19 mRNA vaccines have proven to be highly effective against severe COVID-19 disease, the decrease in vaccine efficacy against emerged Beta and Delta variants emphasizes the need for constant monitoring of new virus lineages and studies on the persistence of vaccine-induced neutralizing antibodies. To analyze the dynamics of COVID-19 mRNA vaccine-induced antibody responses, we followed 52 health care workers in Finland for 6 months after receiving two doses of BNT162b2 vaccine with a 3-week interval. We demonstrate that, although anti-S1 antibody levels decrease 2.3-fold compared to peak antibody levels, anti-SARS-CoV-2 antibodies persist for months after BNT162b2 vaccination. Variants D614G, Alpha, and Eta are neutralized by sera of 100% of vaccinees, whereas neutralization of Delta is 3.8-fold reduced and neutralization of Beta is 5.8-fold reduced compared to D614G. Despite this reduction, 85% of sera collected 6 months postvaccination neutralizes Delta variant. IMPORTANCE A decrease in vaccine efficacy against emerging SARS-CoV-2 variants has increased the importance of assessing the persistence of SARS-CoV-2 spike protein-specific antibodies and neutralizing antibodies. Our data show that after 6 months post two doses of BNT162b2 vaccine, antibody levels decrease yet remain detectable and capable of neutralizing emerging variants. By monitoring the vaccine-induced antibody responses, vaccination strategies and administration of booster doses can be optimized. | Microbiol Spectr | 2022 | LitCov and CORD-19 | |
183 | Analysis of COVID-19 Incidence and Severity Among Adults Vaccinated With 2-Dose mRNA COVID-19 or Inactivated SARS-CoV-2 Vaccines With and Without Boosters in Singapore N/A | JAMA Netw Open | 2022 | LitCov | |
184 | T-cell and antibody responses to first BNT162b2 vaccine dose in previously infected and SARS-CoV-2-naive UK health-care workers: a multicenter prospective cohort study BACKGROUND: Previous infection with SARS-CoV-2 affects the immune response to the first dose of the SARS-CoV-2 vaccine. We aimed to compare SARS-CoV-2-specific T-cell and antibody responses in health-care workers with and without previous SARS-CoV-2 infection following a single dose of the BNT162b2 (tozinameran; Pfizer–BioNTech) mRNA vaccine. METHODS: We sampled health-care workers enrolled in the PITCH study across four hospital sites in the UK (Oxford, Liverpool, Newcastle, and Sheffield). All health-care workers aged 18 years or older consenting to participate in this prospective cohort study were included, with no exclusion criteria applied. Blood samples were collected where possible before vaccination and 28 (±7) days following one or two doses (given 3–4 weeks apart) of the BNT162b2 vaccine. Previous infection was determined by a documented SARS-CoV-2-positive RT-PCR result or the presence of positive anti-SARS-CoV-2 nucleocapsid antibodies. We measured spike-specific IgG antibodies and quantified T-cell responses by interferon-γ enzyme-linked immunospot assay in all participants where samples were available at the time of analysis, comparing SARS-CoV-2-naive individuals to those with previous infection. FINDINGS: Between Dec 9, 2020, and Feb 9, 2021, 119 SARS-CoV-2-naive and 145 previously infected health-care workers received one dose, and 25 SARS-CoV-2-naive health-care workers received two doses, of the BNT162b2 vaccine. In previously infected health-care workers, the median time from previous infection to vaccination was 268 days (IQR 232–285). At 28 days (IQR 27–33) after a single dose, the spike-specific T-cell response measured in fresh peripheral blood mononuclear cells (PBMCs) was higher in previously infected (n=76) than in infection-naive (n=45) health-care workers (median 284 [IQR 150–461] vs 55 [IQR 24–132] spot-forming units [SFUs] per 10(6) PBMCs; p<0·0001). With cryopreserved PBMCs, the T-cell response in previously infected individuals (n=52) after one vaccine dose was equivalent to that of infection-naive individuals (n=19) after receiving two vaccine doses (median 152 [IQR 119–275] vs 162 [104–258] SFUs/10(6) PBMCs; p=1·00). Anti-spike IgG antibody responses following a single dose in 142 previously infected health-care workers (median 270 373 [IQR 203 461–535 188] antibody units [AU] per mL) were higher than in 111 infection-naive health-care workers following one dose (35 001 [17 099–55 341] AU/mL; p<0·0001) and higher than in 25 infection-naive individuals given two doses (180 904 [108 221–242 467] AU/mL; p<0·0001). INTERPRETATION: A single dose of the BNT162b2 vaccine is likely to provide greater protection against SARS-CoV-2 infection in individuals with previous SARS-CoV-2 infection, than in SARS-CoV-2-naive individuals, including against variants of concern. Future studies should determine the additional benefit of a second dose on the magnitude and durability of immune responses in individuals vaccinated following infection, alongside evaluation of the impact of extending the interval between vaccine doses. FUNDING: UK Department of Health and Social Care, and UK Coronavirus Immunology Consortium. | Lancet Microbe | 2022 | LitCov and CORD-19 | |
185 | A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster BACKGROUND: An ongoing outbreak of pneumonia associated with a novel coronavirus was reported in Wuhan city, Hubei province, China. Affected patients were geographically linked with a local wet market as a potential source. No data on person-to-person or nosocomial transmission have been published to date. METHODS: In this study, we report the epidemiological, clinical, laboratory, radiological, and microbiological findings of five patients in a family cluster who presented with unexplained pneumonia after returning to Shenzhen, Guangdong province, China, after a visit to Wuhan, and an additional family member who did not travel to Wuhan. Phylogenetic analysis of genetic sequences from these patients were done. FINDINGS: From Jan 10, 2020, we enrolled a family of six patients who travelled to Wuhan from Shenzhen between Dec 29, 2019 and Jan 4, 2020. Of six family members who travelled to Wuhan, five were identified as infected with the novel coronavirus. Additionally, one family member, who did not travel to Wuhan, became infected with the virus after several days of contact with four of the family members. None of the family members had contacts with Wuhan markets or animals, although two had visited a Wuhan hospital. Five family members (aged 36–66 years) presented with fever, upper or lower respiratory tract symptoms, or diarrhoea, or a combination of these 3–6 days after exposure. They presented to our hospital (The University of Hong Kong-Shenzhen Hospital, Shenzhen) 6–10 days after symptom onset. They and one asymptomatic child (aged 10 years) had radiological ground-glass lung opacities. Older patients (aged >60 years) had more systemic symptoms, extensive radiological ground-glass lung changes, lymphopenia, thrombocytopenia, and increased C-reactive protein and lactate dehydrogenase levels. The nasopharyngeal or throat swabs of these six patients were negative for known respiratory microbes by point-of-care multiplex RT-PCR, but five patients (four adults and the child) were RT-PCR positive for genes encoding the internal RNA-dependent RNA polymerase and surface Spike protein of this novel coronavirus, which were confirmed by Sanger sequencing. Phylogenetic analysis of these five patients' RT-PCR amplicons and two full genomes by next-generation sequencing showed that this is a novel coronavirus, which is closest to the bat severe acute respiatory syndrome (SARS)-related coronaviruses found in Chinese horseshoe bats. INTERPRETATION: Our findings are consistent with person-to-person transmission of this novel coronavirus in hospital and family settings, and the reports of infected travellers in other geographical regions. FUNDING: The Shaw Foundation Hong Kong, Michael Seak-Kan Tong, Respiratory Viral Research Foundation Limited, Hui Ming, Hui Hoy and Chow Sin Lan Charity Fund Limited, Marina Man-Wai Lee, the Hong Kong Hainan Commercial Association South China Microbiology Research Fund, Sanming Project of Medicine (Shenzhen), and High Level-Hospital Program (Guangdong Health Commission). | Lancet | 2020 | LitCov and CORD-19 | |
186 | Comparison of SARS-CoV-2 Spike Protein Binding to ACE2 Receptors from Human, Pets, Farm Animals and Putative Intermediate Hosts The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulted in a pandemic. Here, we used X-ray structures of human ACE2 bound to the receptor-binding domain (RBD) of the spike protein (S) from SARS-CoV-2 to predict its binding to ACE2 proteins from different animals, including pets, farm animals, and putative intermediate hosts of SARS-CoV-2. Comparing the interaction sites of ACE2 proteins known to serve or not serve as receptors allows the definition of residues important for binding. From the 20 amino acids in ACE2 that contact S, up to 7 can be replaced and ACE2 can still function as the SARS-CoV-2 receptor. These variable amino acids are clustered at certain positions, mostly at the periphery of the binding site, while changes of the invariable residues prevent S binding or infection of the respective animal. Some ACE2 proteins even tolerate the loss or acquisition of N-glycosylation sites located near the S interface. Of note, pigs and dogs, which are not infected or are not effectively infected and have only a few changes in the binding site, exhibit relatively low levels of ACE2 in the respiratory tract. Comparison of the RBD of S of SARS-CoV-2 with that from bat coronavirus strain RaTG13 (Bat-CoV-RaTG13) and pangolin coronavirus (Pangolin-CoV) strain hCoV-19/pangolin/Guangdong/1/2019 revealed that the latter contains only one substitution, whereas Bat-CoV-RaTG13 exhibits five. However, ACE2 of pangolin exhibits seven changes relative to human ACE2, and a similar number of substitutions is present in ACE2 of bats, raccoon dogs, and civets, suggesting that SARS-CoV-2 may not be especially adapted to ACE2 of any of its putative intermediate hosts. These analyses provide new insight into the receptor usage and animal source/origin of SARS-CoV-2. IMPORTANCE SARS-CoV-2 is threatening people worldwide, and there are no drugs or vaccines available to mitigate its spread. The origin of the virus is still unclear, and whether pets and livestock can be infected and transmit SARS-CoV-2 are important and unknown scientific questions. Effective binding to the host receptor ACE2 is the first prerequisite for infection of cells and determines the host range. Our analysis provides a framework for the prediction of potential hosts of SARS-CoV-2. We found that ACE2 from species known to support SARS-CoV-2 infection tolerate many amino acid changes, indicating that the species barrier might be low. Exceptions are dogs and especially pigs, which revealed relatively low ACE2 expression levels in the respiratory tract. Monitoring of animals is necessary to prevent the generation of a new coronavirus reservoir. Finally, our analysis also showed that SARS-CoV-2 may not be specifically adapted to any of its putative intermediate hosts. | J Virol | 2020 | LitCov and CORD-19 | |
187 | Workplace interventions to reduce the risk of SARS-CoV-2 infection outside of healthcare settings N/A | Cochrane Database Syst Rev | 2022 | LitCov and CORD-19 | |
188 | Technical guidelines for seasonal influenza vaccination in China (2020-2021) N/A | Zhonghua Yu Fang Yi Xue Za Zhi | 2020 | LitCov and CORD-19 | |
189 | Factors associated with COVID-19-related death using OpenSAFELY COVID-19 has rapidly impacted on mortality worldwide.(1) There is unprecedented urgency to understand who is most at risk of severe outcomes, requiring new approaches for timely analysis of large datasets. Working on behalf of NHS England we created OpenSAFELY: a secure health analytics platform covering 40% of all patients in England, holding patient data within the existing data centre of a major primary care electronic health records vendor. Primary care records of 17,278,392 adults were pseudonymously linked to 10,926 COVID-19 related deaths. COVID-19 related death was associated with: being male (hazard ratio 1.59, 95%CI 1.53-1.65); older age and deprivation (both with a strong gradient); diabetes; severe asthma; and various other medical conditions. Compared to people with white ethnicity, black and South Asian people were at higher risk even after adjustment for other factors (HR 1.48, 1.29-1.69 and 1.45, 1.32-1.58 respectively). We have quantified a range of clinical risk factors for COVID-19 related death in the largest cohort study conducted by any country to date. OpenSAFELY is rapidly adding further patients’ records; we will update and extend results regularly. | Nature | 2020 | LitCov and CORD-19 | |
190 | Safety and immunogenicity of one vs two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: interim analysis of a prospective observational study BACKGROUND: The efficacy and safety profiles of vaccines against SARS-CoV-2 in patients with cancer is unknown. We aimed to assess the safety and immunogenicity of the BNT162b2 (Pfizer–BioNTech) vaccine in patients with cancer. METHODS: For this prospective observational study, we recruited patients with cancer and healthy controls (mostly health-care workers) from three London hospitals between Dec 8, 2020, and Feb 18, 2021. Participants who were vaccinated between Dec 8 and Dec 29, 2020, received two 30 μg doses of BNT162b2 administered intramuscularly 21 days apart; patients vaccinated after this date received only one 30 μg dose with a planned follow-up boost at 12 weeks. Blood samples were taken before vaccination and at 3 weeks and 5 weeks after the first vaccination. Where possible, serial nasopharyngeal real-time RT-PCR (rRT-PCR) swab tests were done every 10 days or in cases of symptomatic COVID-19. The coprimary endpoints were seroconversion to SARS-CoV-2 spike (S) protein in patients with cancer following the first vaccination with the BNT162b2 vaccine and the effect of vaccine boosting after 21 days on seroconversion. All participants with available data were included in the safety and immunogenicity analyses. Ongoing follow-up is underway for further blood sampling after the delayed (12-week) vaccine boost. This study is registered with the NHS Health Research Authority and Health and Care Research Wales (REC ID 20/HRA/2031). FINDINGS: 151 patients with cancer (95 patients with solid cancer and 56 patients with haematological cancer) and 54 healthy controls were enrolled. For this interim data analysis of the safety and immunogenicity of vaccinated patients with cancer, samples and data obtained up to March 19, 2021, were analysed. After exclusion of 17 patients who had been exposed to SARS-CoV-2 (detected by either antibody seroconversion or a positive rRT-PCR COVID-19 swab test) from the immunogenicity analysis, the proportion of positive anti-S IgG titres at approximately 21 days following a single vaccine inoculum across the three cohorts were 32 (94%; 95% CI 81–98) of 34 healthy controls; 21 (38%; 26–51) of 56 patients with solid cancer, and eight (18%; 10–32) of 44 patients with haematological cancer. 16 healthy controls, 25 patients with solid cancer, and six patients with haematological cancer received a second dose on day 21. Of the patients with available blood samples 2 weeks following a 21-day vaccine boost, and excluding 17 participants with evidence of previous natural SARS-CoV-2 exposure, 18 (95%; 95% CI 75–99) of 19 patients with solid cancer, 12 (100%; 76–100) of 12 healthy controls, and three (60%; 23–88) of five patients with haematological cancers were seropositive, compared with ten (30%; 17–47) of 33, 18 (86%; 65–95) of 21, and four (11%; 4–25) of 36, respectively, who did not receive a boost. The vaccine was well tolerated; no toxicities were reported in 75 (54%) of 140 patients with cancer following the first dose of BNT162b2, and in 22 (71%) of 31 patients with cancer following the second dose. Similarly, no toxicities were reported in 15 (38%) of 40 healthy controls after the first dose and in five (31%) of 16 after the second dose. Injection-site pain within 7 days following the first dose was the most commonly reported local reaction (23 [35%] of 65 patients with cancer; 12 [48%] of 25 healthy controls). No vaccine-related deaths were reported. INTERPRETATION: In patients with cancer, one dose of the BNT162b2 vaccine yields poor efficacy. Immunogenicity increased significantly in patients with solid cancer within 2 weeks of a vaccine boost at day 21 after the first dose. These data support prioritisation of patients with cancer for an early (day 21) second dose of the BNT162b2 vaccine. FUNDING: King's College London, Cancer Research UK, Wellcome Trust, Rosetrees Trust, and Francis Crick Institute. | Lancet Oncol | 2021 | LitCov and CORD-19 | |
191 | Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection N/A | Nat Med | 2021 | LitCov and CORD-19 | |
192 | Risk Factors of Psychological Responses of Chinese University Students During the COVID-19 Outbreak: Cross-sectional Web-Based Survey Study BACKGROUND: COVID-19 is a highly contagious and highly pathogenic disease caused by a novel coronavirus, SARS-CoV-2, and it has become a pandemic. As a vulnerable population, university students are at high risk during the epidemic, as they have high mobility and often overlook the severity of the disease because they receive incomplete information about the epidemic. In addition to the risk of death from infection, the epidemic has placed substantial psychological pressure on the public. In this respect, university students are more prone to psychological problems induced by the epidemic compared to the general population because for most students, university life is their first time outside the structure of the family, and their mental development is still immature. Internal and external expectations and academic stress lead to excessive pressure on students, and unhealthy lifestyles also deteriorate their mental health. The outbreak of COVID-19 was a significant social event, and it could potentially have a great impact on the life and the mental health of university students. Therefore, it is of importance to investigate university students’ mental health status during the outbreak of COVID-19. OBJECTIVE: The principal objective of this study was to investigate the influencing factors of the psychological responses of Chinese university students during the COVID-19 outbreak. METHODS: This study used data from a survey conducted in China between February 21 and 24, 2020, and the data set contains demographic information and psychological measures including the Self-Rating Anxiety Scale, the Self-Rating Depression Scale, and the compulsive behaviors portion of the Yale-Brown Obsessive-Compulsive Scale. A total of 2284 questionnaires were returned, and 2270 of them were valid and were used for analysis. The Mann-Whitney U test for two independent samples and binary logistic regression models were used for statistical analysis. RESULTS: Our study surveyed 563 medical students and 1707 nonmedical students. Among them, 251/2270 students (11.06%) had mental health issues. The results showed that contact history of similar infectious disease (odds ratio [OR] 3.363, P=.02), past medical history (OR 3.282, P<.001), and compulsive behaviors (OR 3.525, P<.001) contributed to the risk of mental health issues. Older students (OR 0.928, P=.02), regular daily life during the epidemic outbreak (OR 0.410, P<.001), exercise during the epidemic outbreak (OR 0.456, P<.001), and concern related to COVID-19 (OR 0.638, P=.002) were protective factors for mental health issues. CONCLUSIONS: According to the study results, mental health issues have seriously affected university students, and our results are beneficial for identifying groups of university students who are at risk for possible mental health issues so that universities and families can prevent or intervene in the development of potential mental health issues at the early stage of their development. | J Med Internet Res | 2021 | LitCov and CORD-19 | |
193 | Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics The interaction between the SARS-CoV-2 virus Spike protein receptor binding domain (RBD) and the ACE2 cell surface protein is required for viral infection of cells. Mutations in the RBD are present in SARS-CoV-2 variants of concern that have emerged independently worldwide. For example, the B.1.1.7 lineage has a mutation (N501Y) in its Spike RBD that enhances binding to ACE2. There are also ACE2 alleles in humans with mutations in the RBD binding site. Here we perform a detailed affinity and kinetics analysis of the effect of five common RBD mutations (K417N, K417T, N501Y, E484K, and S477N) and two common ACE2 mutations (S19P and K26R) on the RBD/ACE2 interaction. We analysed the effects of individual RBD mutations and combinations found in new SARS-CoV-2 Alpha (B.1.1.7), Beta (B.1.351), and Gamma (P1) variants. Most of these mutations increased the affinity of the RBD/ACE2 interaction. The exceptions were mutations K417N/T, which decreased the affinity. Taken together with other studies, our results suggest that the N501Y and S477N mutations enhance transmission primarily by enhancing binding, the K417N/T mutations facilitate immune escape, and the E484K mutation enhances binding and immune escape. | Elife | 2021 | LitCov and CORD-19 | |
194 | Could masks curtail the post-lockdown resurgence of COVID-19 in the US? The community lockdown measures implemented in the United States from late March to late May of 2020 resulted in a significant reduction in the community transmission of the COVID-19 pandemic throughout the country. However, a number of US states are currently experiencing an alarming post-lockdown resurgence of the pandemic, triggering fears for a devastating second pandemic wave. We designed a mathematical model for addressing the key question of whether or not the universal use of face masks can halt such resurgence (and possibly avert a second wave, without having to undergo another cycle of major community lockdown) in the states of Arizona, Florida, New York and the entire US. Model calibration, using cumulative mortality data for the four jurisdictions during their respective pre-lockdown and lockdown periods, show that pre-symptomatic and asymptomatically-infectious individuals are, by far, the main drivers of the COVID-19 pandemic in each of the jurisdictions. The implication of this result is that detecting and isolating individuals with clinical symptoms of the pandemic alone (even if all of them are found) may not be sufficient to effectively curtail the pandemic. To achieve such control, it is crucially-necessary that pre-symptomatic and asymptomatically-infectious individuals are rapidly detected and isolated (and their contacts rapidly traced and tested). Our study highlights the importance of early implementation of the community lockdown measures. In particular, a sizable reduction in the burden of the pandemic would have been recorded in each of the four jurisdictions if the community lockdown measures were implemented a week or two earlier. These reductions are significantly increased if the early implementation of the lockdown measures was complemented with a public face mask use strategy. With all related control measures maintained at their baseline levels, this study shows that the pandemic would have been almost completely suppressed from significantly taking off if the lockdown measures were implemented two weeks earlier, and if a sizable percentage of the residents of the four jurisdictions wore face masks during the respective lockdown periods (mention what happens if lockdown measures were extended by two weeks). We simulated the pandemic in the four jurisdictions under three levels of lifting of community lockdown, namely mild, moderate and high. For the scenario where the control measures adopted are at the baseline levels during the lockdown period, our simulations show that the states of Arizona and Florida will record devastating second waves of the pandemic by the end of 2020, while the state of New York and the entire US will record milder second waves. If the community lockdown measures were lifted at the mild lifting level (i.e., only limited community contacts and business activities are allowed, in comparison to the levels of these activities allowed during the corresponding lockdown period), only the state of Florida will experience a second wave. It is further shown that the severity of the projected second waves depend on the level of lifting of the community lockdown. For instance, the projected second wave for Arizona and Florida will be more severe than their first waves. It is further shown that, for high level of lifting of community lockdown measures, the increased use of face masks after the lockdown period greatly reduces the burden of the pandemic in each jurisdiction. In particular, for this high lockdown lifting scenario, none of the four jurisdictions will experience a second wave if half of their residents wear face masks consistently after their respective lockdown period. A diagnostic testing strategy that increases the maximum detection rate of asymptomatic infected individuals (followed by contact tracing and self-isolation of the detected cases) greatly reduces the burden of the pandemic in all four jurisdictions, particularly if also combined with a universal face mask use strategy. Finally, it is shown that the universal use of face masks in public, with at least moderate level of compliance, could halt the post-lockdown resurgence of COVID-19, in addition to averting the potential for (and severity of) a second wave of the pandemic in each of the four jurisdictions. | Math Biosci | 2020 | LitCov and CORD-19 | |
195 | Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor N/A | Nature | 2020 | LitCov and CORD-19 | |
196 | SARS-CoV-2 and coronavirus disease-2019: The epidemic and the challenges The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; previously provisionally named 2019 novel coronavirus or 2019-nCoV) disease (COVID-19) in China at the end of 2019 has caused a large global outbreak and is a major public health issue. As of 11 February 2020, data from the World Health Organization (WHO) have shown that more than 43 000 confirmed cases have been identified in 28 countries/regions, with >99% of cases being detected in China. On 30 January 2020, the WHO declared COVID-19 as the sixth public health emergency of international concern. SARS-CoV-2 is closely related to two bat-derived severe acute respiratory syndrome-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21. It is spread by human-to-human transmission via droplets or direct contact, and infection has been estimated to have mean incubation period of 6.4 days and a basic reproduction number of 2.24–3.58. Among patients with pneumonia caused by SARS-CoV-2 (novel coronavirus pneumonia or Wuhan pneumonia), fever was the most common symptom, followed by cough. Bilateral lung involvement with ground-glass opacity was the most common finding from computed tomography images of the chest. The one case of SARS-CoV-2 pneumonia in the USA is responding well to remdesivir, which is now undergoing a clinical trial in China. Currently, controlling infection to prevent the spread of SARS-CoV-2 is the primary intervention being used. However, public health authorities should keep monitoring the situation closely, as the more we can learn about this novel virus and its associated outbreak, the better we can respond. | Int J Antimicrob Agents | 2020 | LitCov and CORD-19 | |
197 | Neutralizing antibody responses elicited by SARS-CoV-2 mRNA vaccination wane over time and are boosted by breakthrough infection The waning efficacy of SARS-CoV-2 vaccines, combined with the continued emergence of variants resistant to vaccine-induced immunity, has reignited debate over the need for booster vaccine doses. To address this, we examined the neutralizing antibody response against the spike protein of five major SARS-CoV-2 variants, D614G, Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529), in health care workers (HCWs) vaccinated with SARS-CoV-2 mRNA vaccines. Serum samples were collected pre-vaccination, three weeks post-first vaccination, one month post-second vaccination, and six months post-second vaccination. Minimal neutralizing antibody titers were detected against Omicron pseudovirus at all four time points, including for a majority of patients who had SARS-CoV-2 breakthrough infections. Neutralizing antibody titers against all other variant spike protein-bearing pseudoviruses declined dramatically from one to six months after the second mRNA vaccine dose, although SARS-CoV-2 infection boosted vaccine responses. Additionally, mRNA-1273-vaccinated HCWs exhibited about two-fold higher neutralizing antibody titers than BNT162b2-vaccinated HCWs. Together these results demonstrate possible waning of antibody-mediated protection against SARS-CoV-2 variants that is dependent on prior infection status and the mRNA vaccine received. They also show that the Omicron variant spike protein can almost completely escape from neutralizing antibodies elicited in recipients of only two mRNA vaccine doses. | Sci Transl Med | 2022 | LitCov and CORD-19 | |
198 | Pathological findings of COVID-19 associated with acute respiratory distress syndrome | Lancet Respir Med | 2020 | LitCov and CORD-19 | |
199 | Homologous or heterologous booster of inactivated vaccine reduces SARS-CoV-2 Omicron variant escape from neutralizing antibodies The massive and rapid transmission of SARS-CoV-2 has led to the emergence of several viral variants of concern (VOCs), with the most recent one, B.1.1.529 (Omicron), which accumulated a large number of spike mutations, raising the specter that this newly identified variant may escape from the currently available vaccines and therapeutic antibodies. Using VSV-based pseudovirus, we found that Omicron variant is markedly resistant to neutralization of sera from convalescents or individuals vaccinated by two doses of inactivated whole-virion vaccines (BBIBP-CorV). However, a homologous inactivated vaccine booster or a heterologous booster with protein subunit vaccine (ZF2001) significantly increased neutralization titers to both WT and Omicron variant. Moreover, at day 14 post the third dose, neutralizing antibody titer reduction for Omicron was less than that for convalescents or individuals who had only two doses of the vaccine, indicating that a homologous or heterologous booster can reduce the Omicron escape from neutralizing. In addition, we tested a panel of 17 SARS-CoV-2 monoclonal antibodies (mAbs). Omicron resists seven of eight authorized/approved mAbs, as well as most of the other mAbs targeting distinct epitopes on RBD and NTD. Taken together, our results suggest the urgency to push forward the booster vaccination to combat the emerging SARS-CoV-2 variants. | Emerg Microbes Infect | 2022 | LitCov and CORD-19 | |
200 | Cohort of Four Thousand Four Hundred Four Persons Under Investigation for COVID-19 in a New York Hospital and Predictors of ICU Care and Ventilation ABSTRACT Study objective Most COVID-19 reports have focused on SARS-CoV-2 positive patients. However, at the time of initial presentation, most patients’ viral status is unknown. Determination of factors that predict initial and subsequent need for intensive care (ICU) and invasive mechanical ventilation (IMV) are critical for resource planning and allocation. We describe our experience with 4,404 persons under investigation (PUI) and explore predictors of ICU care and IMV at a NY COVID-19 epicenter. Methods We conducted a retrospective COHORT of all persons under investigation (PUI) presenting to a large academic medical center emergency department (ED) in NYS with symptoms suggestive of COVID-19. The association between patient predictor variables and SARS-CoV-2 status, intensive care unit (ICU) admission, invasive mechanical ventilation (IMV), and mortality were explored with univariate and multivariate analyses. Results Between March 12-April 14, 2020 we saw 4,404 PUI patients of whom 68% were discharged home, 29% were admitted to a regular floor and 3% to an ICU. 1,651 of 3,369 patients tested were SARS-CoV-2 positive to date. Of regular floor admits, 13% were subsequently upgraded to the ICU after a median (IQR) of 62 (28-106) hrs. 50 patients required IMV in the ED, 4 required prehospital IMV, and another 167 subsequently required IMV in a median (IQR) of 60 (26-99) hours after admission. Testing positive for SARS-CoV-2 and lower oxygen saturations were associated with need for ICU, IMV and death. High respiratory rates were associated with the need for ICU care. Conclusions PUI for COVID-19 contribute significantly to the healthcare burden beyond those ruling in for SARS-CoV-2. For every 100 admitted PUI, 9 will require ICU and/or IMV upon arrival and another 12 within 2-3 days of hospital admission, especially PUIs with lower oxygen saturations and positive SARS-CoV-2 swabs. This information should help hospitals stay ahead of the pandemic curve. | Ann Emerg Med | 2020 | LitCov and CORD-19 |
(1) COVID-19 Open Research Dataset (CORD-19). 2020. Version 2022-06-02. Retrieved from https://ai2-semanticscholar-cord-19.s3-us-west-2.amazonaws.com/historical_releases.html. Accessed 2022-06-05. doi:10.5281/zenodo.3715506
(2) Chen Q, Allot A, & Lu Z. (2020) Keep up with the latest coronavirus research, Nature 579:193 and Chen Q, Allot A, Lu Z. LitCovid: an open database of COVID-19 literature. Nucleic Acids Research. 2020. (version 2023-01-10)
(3) Currently tweets of June 23rd to June 29th 2022 have been considered.