\ BIP! Finder for COVID-19 - Impact-based ranking

BIP! Finder for COVID-19

This version of BIP! Finder aims to ease the exploration of COVID-19-related literature by enabling ranking articles based on various impact metrics.

Last Update: 18 - 01 - 2023 (628506 entries)

Provided impact measures:
Popularity: Citation-based measure reflecting the current impact.
Influence: Citation-based measure reflecting the total impact.
Reader Attention: The current number of Mendeley readers.
Social Media Attention: The number of recent tweets related to this article.
*More details on these impact measures can be found here.
Score interpretations:
Exceptional score (in top 0.01%).
Substantial score (in top 1%).
Average score (in bottom 99%).
Score not available.
Main data sources:
CORD-19 dataset(1) (list of papers)
LitCovid hub(2) (list of papers)
PMC & PubMed (citations)
Mendeley (number of readers)
COVID-19-TweetIDs(3) (tweets)

Use:  Impact  Relevance & Impact
TitleVenueYearImpactSource
1Beyond the black stump: rapid reviews of health research issues affecting regional, rural and remote Australia  

N/A

Med J Aust2020       CORD-19
2Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China  

Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.

Lancet2020       LitCov and CORD-19
3Safety and Efficacy of Imatinib for Hospitalized Adults with COVID-19: A structured summary of a study protocol for a randomised controlled trial  

OBJECTIVES: Primary Objective: To evaluate the efficacy and safety of oral administration of imatinib combined with the Best Conventional Care (BCC) versus placebo plus BCC in hospitalized patients with COVID-19. Hypothesis: Addition of imatinib to the BCC will provide a superior clinical outcome for patients with COVID-19 compared with BCC plus placebo. This hypothesis is on the basis of 1) intralysosomal entrapment of imatinib will increase endosomal pH and effectively decrease SARS-CoV-2/cell fusion, 2) kinase inhibitory activity of imatinib will interfere with budding/release or replication of SARS-CoV-2, and 3) because of the critical role of mechanical ventilation in the care of patients with ARDS, imatinib will have a significant clinical impact for patients with critical COVID-19 infection in Intensive Care Unit (ICU). TRIAL DESIGN: This is an individual patient-level randomized, double-blind, placebo-controlled, two-parallel arm phase 3 study to evaluate the safety and efficacy of imatinib for the treatment of hospitalized adults with COVID-19. Participants will be followed for up to 60 days from the start of study drug administration. This trial will be conducted in accordance with the principles of the Declaration of Helsinki and the Good Clinical Practice guidelines of the International Conference on Harmonization. PARTICIPANTS: Inclusion Criteria: Patients may be included in the study only if they meet all of the following criteria: 1) Ability to understand and willingness to sign a written informed consent document. Informed consent must be obtained prior to participation in the study. For patients who are too unwell to provide consent such as patients on invasive ventilator or extracorporeal membrane oxygenation (ECMO), their Legally Authorized Representative (LAR) can sign the informed consent, 2) Hospitalized patients ≥18 years of age, 3) Positive reverse transcriptase-polymerase chain reaction (RT-PCR) assay for SARS-CoV-2 in the respiratory tract sample (oropharyngeal, nasopharyngeal or bronchoalveolar lavage (BAL)) by Center for Disease Control or local laboratory within 7 days of randomization, 4) Women of childbearing potential must agree to use at least one primary form of contraception for the duration of the study. Exclusion Criteria: Patients meeting any of the following criteria are not eligible for the study: 1) Patients receiving any other investigational agents in a clinical trial. Off-label use of agents such as hydroxychloroquine is not an exclusion criterion, 2) Pregnant or breastfeeding women, 3) Patients with significant liver or renal dysfunction at the time of screening as defined as: 3.1) Direct bilirubin >2.5 mg/dL, 3.2) AST, ALT, or alkaline phosphatase >5x upper limit of normal, 3.3) eGFR ≤30 mL/min or requiring renal replacement therapy, 4) Patients with significant hematologic disorder at screen as defined as: 4.1) Absolute neutrophil count (ANC) <500/μL, 4.2) Platelet <20,000/μL, 4.3) Hemoglobin <7 g/dL, 5) Uncontrolled underlying illness including, but not limited to, symptomatic congestive heart failure, unstable angina pectoris, uncontrolled active seizure disorder, or psychiatric illness/social situations that per site Principal Investigator’s judgment would limit compliance with study requirements, 6) Known allergy to imatinib or its component products, 7) Any other clinical conditions that in the opinion of the investigator would make the subject unsuitable for the study. Both men and women of all races and ethnic groups are eligible for this trial. University of Maryland Medical Center, Baltimore, MD is the initiating site. The study may be opened in other centers on the basis of the accrual rate or the magnitude of the COVID-19 pandemic. INTERVENTION AND COMPARATOR: Imatinib: All doses of imatinib should be administered with a meal and a large glass of water. Imatinib can be dissolved in water or apple juice for patients having difficulty swallowing. In this study, patients with confirmed positive COVID-19 tests receive imatinib for a total of 14 days; 400 mg orally daily Days 1-14. Imatinib 400 mg tablets will be encapsulated using size 000 capsules and cellulose microcrystalline filler. For patients on ventilator or ECMO, imatinib will be given as oral suspension (40 mg/mL). To make the oral suspension, imatinib tablets will be crushed and mixed in Ora-sweet solution to yield a concentration of 40 mg/mL suspension by pharmacy. Additionally, in the absence of supportive microbiological testing results, we confirm that the in-use stability period for the prepared imatinib suspensions will be 24 hours at room temperature or 7 days at refrigerated conditions. The pharmacy staff will follow the American Society Health-System Pharmacists (ASHP) guidelines for handling hazardous drugs. Placebo: The matching placebo will be packaged by Investigational Drug Service Pharmacy at University of Maryland Medical Center. The placebos will be prepared using size 000 capsules and cellulose microcrystalline filler. Imatinib 400 mg capsules and placebo capsules will be identical form and color. For patients on ventilator or ECMO, placebo will be given as oral suspension with similar process for making imatinib suspension. Concomitant Medications/supportive care: In both arms, patients can receive concomitant available local standard of care antipyretics, antibacterials, antivirals, antifungals and anti-inflammatory including hydroxychloroquine at the discretion of the treating physician as necessary. For other drug-drug interactions particularly with CYP P450, the treating physician should consider the risk and benefit of drug administration based on available information. Co-administration of off-label immunomodulatory treatments for COVID-19 including but not limited to corticosteroids, sarilumab, clazakizumab, tocilizumab, and anakinra will be allowed but may affect interpretability of study outcomes. The timing, dosing, and duration of these treatments will be meticulously collected, including any of these treatments that may be used for participants who experience progression of COVID-19 disease after study enrollment. Two analyses will be performed, the primary analysis will compare the primary endpoint in the two trial arms irrespective of any other treatment; the second analysis will be stratified for co-administration of immunomodulatory drugs. MAIN OUTCOMES: The primary endpoint is the proportion of patients with a two-point improvement at Day 14 from baseline using the 8-category ordinal scale. The ordinal scale is an evaluation of the clinical status at the first assessment of a given study day. The scale is as follows: 1) Not hospitalized, no limitations on activities; 2) Not hospitalized, limitation on activities and/or requiring home oxygen; 3) Hospitalized, not requiring supplemental oxygen – no longer requires ongoing medical care; 4) Hospitalized, not requiring supplemental oxygen - requiring ongoing medical care (COVID-19 related or otherwise); 5) Hospitalized, requiring supplemental oxygen; 6) Hospitalized, on non-invasive ventilation or high flow oxygen devices; 7) Hospitalized, on invasive mechanical ventilation or ECMO; 8) Death. The secondary endpoints include: All-cause mortality at Day 28, All-cause mortality at Day 60, Time to a 2-point clinical improvement difference over baseline, Duration of hospitalization, Duration of ECMO or invasive mechanical ventilation (for subjects who are on ECMO or mechanical ventilation at Day 1), Duration of ICU stay (for subjects who are in ICU at Day 1), Time to SARS-CoV-2 negative by RT-PCR, Proportion of patients with negative oropharyngeal or nasopharyngeal swab for SARS-CoV-2 by RT-PCR on days 5, 10, 14, 21, and 28 after starting treatment, Proportion of subjects with serious adverse events, Proportion of subjects who discontinue study drug due to adverse events. The exploratory endpoints include: Determine the impact of treatment arms on IL-6 levels, Obtain blood/peripheral blood mononuclear cells (PBMCs) for storage to look at transcriptomics in severe disease, Association of major histocompatibility complex (MHC) with severity of illness, Mean change in the ordinal scale from baseline, Time to an improvement of one category from admission using an ordinal scale, Duration of hospitalization, Duration of new oxygen use, Number of oxygenation free days, Duration of new mechanical ventilation, Number of ventilator free days. RANDOMIZATION: Eligible patients will be uniformly randomized in 1:1 ratio to receive either imatinib or placebo for 14 days. Both groups will receive the BCC. The randomized treatment allocations use stratified, permuted block randomization with a variable block size; blocks are generated using a validated random number generator. In order to balance the severity of the respiratory illness between the two arms, randomization will be stratified based on radiographic findings and oxygen requirements: 1) Severe disease: evidence of pneumonia on chest X-ray or CT scan OR chest auscultation (rales, crackles), and SpO(2) ≤92% on ambient air or PaO(2)/FiO(2) <300 mmHg, and requires supplemental oxygen administration by nasal cannula, simple face mask, or other similar oxygen delivery device; 2) Critical disease: requires supplemental oxygen delivered by non-rebreather mask or high flow cannula OR use of invasive or non-invasive ventilation OR requiring treatment in an intensive care unit, use of vasopressors, extracorporeal life support, or renal replacement therapy. BLINDING (MASKING): The participants, caregivers, and the statistician are blinded to group assignment. The only people who are not blinded are Site Pharmacists. Blinding will be performed via a specific randomization process. Centralized, concealed randomization will be executed by the Primary Site’s Pharmacist. Data on eligible consented cases will be submitted electronically on the appropriate on-study form to the pharmacy, where the patient is randomized to imatinib or placebo. Imatinib 400 mg capsules and placebo capsules will be identical form and color. For patients on ventilator or ECMO, placebo will be given as oral suspension with similar process for making imatinib suspension. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): The trial is designed as a double-blind, two-parallel arm, randomized controlled trial with a uniform (1:1) allocation ratio to: Arm A) Imatinib or Arm B) Placebo. Patients in both arms will receive the BCC per local institutional standards at the discretion of the treating physician. Group sample sizes of 102 in Arm A and 102 in Arm B achieve 80.6% power to detect a difference between the group proportions of 0.20. The proportion in Arm A (imatinib treatment arm) is assumed to be 0.30 under the null hypothesis and 0.50 under the alternative hypothesis. The proportion in Arm B (placebo control arm) is 0.30. The test statistic used is the two-sided Fisher's Exact Test. The significance level of the test is targeted at 0.05. The significance level actually achieved by this design is α=0.0385. The power of the test is calculated using binomial enumeration of all possible outcomes. The primary analysis will be conducted using an intention to treat principle (ITT) for participants who at least receive one dose of study drug or placebo. The sample size is not inflated for dropouts. All patients will be evaluable irrespective of the clinical course of their disease. TRIAL STATUS: Current protocol version is 1.2 from May 8, 2020. The recruitment started on June 15, 2020 and is ongoing. We originally anticipated that the trial would finish recruitment by mid 2021. We are aware of the enrollment requirement of approximately 200 patients, which is required to provide scientific integrity of the results. We are also aware of the fact that enrolling this number of patients in a single-site at University of Maryland Medical Center (UMMC) may take longer than expected, particularly taken into account other competing studies. For this reason, we are actively considering opening the protocol in other sites. After identification of other sites, we will fulfill all regulatory requirements before opening the protocol in other sites. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04394416. First Posted: May 19, 2020; Last Update Posted: June 4, 2020. FDA has issued the “Study May Proceed” Letter for this clinical trial under the Investigational New Drug (IND) number 149239. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. SUPPLEMENTARY INFORMATION: Supplementary information accompanies this paper at 10.1186/s13063-020-04819-9.

Trials2020       LitCov and CORD-19
4Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study  

BACKGROUND: Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. METHODS: In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. FINDINGS: 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p<0·0001), and d-dimer greater than 1 μg/mL (18·42, 2·64–128·55; p=0·0033) on admission. Median duration of viral shedding was 20·0 days (IQR 17·0–24·0) in survivors, but SARS-CoV-2 was detectable until death in non-survivors. The longest observed duration of viral shedding in survivors was 37 days. INTERPRETATION: The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. FUNDING: Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

Lancet2020       LitCov and CORD-19
5Clinical Characteristics of COVID-19 in China  

BACKGROUND: Since December 2019, when coronavirus disease 2019 (Covid-19) emerged in Wuhan city and rapidly spread throughout China, data have been needed on the clinical characteristics of the affected patients. METHODS: We extracted data regarding 1099 patients with laboratory-confirmed Covid-19 from 552 hospitals in 30 provinces, autonomous regions, and municipalities in mainland China through January 29, 2020. The primary composite end point was admission to an intensive care unit (ICU), the use of mechanical ventilation, or death. RESULTS: The median age of the patients was 47 years; 41.9% of the patients were female. The primary composite end point occurred in 67 patients (6.1%), including 5.0% who were admitted to the ICU, 2.3% who underwent invasive mechanical ventilation, and 1.4% who died. Only 1.9% of the patients had a history of direct contact with wildlife. Among nonresidents of Wuhan, 72.3% had contact with residents of Wuhan, including 31.3% who had visited the city. The most common symptoms were fever (43.8% on admission and 88.7% during hospitalization) and cough (67.8%). Diarrhea was uncommon (3.8%). The median incubation period was 4 days (interquartile range, 2 to 7). On admission, ground-glass opacity was the most common radiologic finding on chest computed tomography (CT) (56.4%). No radiographic or CT abnormality was found in 157 of 877 patients (17.9%) with nonsevere disease and in 5 of 173 patients (2.9%) with severe disease. Lymphocytopenia was present in 83.2% of the patients on admission. CONCLUSIONS: During the first 2 months of the current outbreak, Covid-19 spread rapidly throughout China and caused varying degrees of illness. Patients often presented without fever, and many did not have abnormal radiologic findings. (Funded by the National Health Commission of China and others.)

N Engl J Med2020       LitCov and CORD-19
6Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China  

N/A

JAMA2020       LitCov and CORD-19
7A Novel Coronavirus from Patients with Pneumonia in China, 2019  

In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.)

N Engl J Med2020       LitCov and CORD-19
8Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study  

BACKGROUND: In December, 2019, a pneumonia associated with the 2019 novel coronavirus (2019-nCoV) emerged in Wuhan, China. We aimed to further clarify the epidemiological and clinical characteristics of 2019-nCoV pneumonia. METHODS: In this retrospective, single-centre study, we included all confirmed cases of 2019-nCoV in Wuhan Jinyintan Hospital from Jan 1 to Jan 20, 2020. Cases were confirmed by real-time RT-PCR and were analysed for epidemiological, demographic, clinical, and radiological features and laboratory data. Outcomes were followed up until Jan 25, 2020. FINDINGS: Of the 99 patients with 2019-nCoV pneumonia, 49 (49%) had a history of exposure to the Huanan seafood market. The average age of the patients was 55·5 years (SD 13·1), including 67 men and 32 women. 2019-nCoV was detected in all patients by real-time RT-PCR. 50 (51%) patients had chronic diseases. Patients had clinical manifestations of fever (82 [83%] patients), cough (81 [82%] patients), shortness of breath (31 [31%] patients), muscle ache (11 [11%] patients), confusion (nine [9%] patients), headache (eight [8%] patients), sore throat (five [5%] patients), rhinorrhoea (four [4%] patients), chest pain (two [2%] patients), diarrhoea (two [2%] patients), and nausea and vomiting (one [1%] patient). According to imaging examination, 74 (75%) patients showed bilateral pneumonia, 14 (14%) patients showed multiple mottling and ground-glass opacity, and one (1%) patient had pneumothorax. 17 (17%) patients developed acute respiratory distress syndrome and, among them, 11 (11%) patients worsened in a short period of time and died of multiple organ failure. INTERPRETATION: The 2019-nCoV infection was of clustering onset, is more likely to affect older males with comorbidities, and can result in severe and even fatal respiratory diseases such as acute respiratory distress syndrome. In general, characteristics of patients who died were in line with the MuLBSTA score, an early warning model for predicting mortality in viral pneumonia. Further investigation is needed to explore the applicability of the MuLBSTA score in predicting the risk of mortality in 2019-nCoV infection. FUNDING: National Key R&D Program of China.

Lancet2020       LitCov and CORD-19
9Epidemiological and clinical characteristics of coronavirus disease cases at a screening clinic during the early outbreak period: a single-center study  

INTRODUCTION. Coronavirus disease 2019 (COVID-19) is an infectious disease caused by Severe Acute Respiratory Corona Virus-2 (SARS-CoV-2). The disease was first identified in December 2019 in Wuhan, the capital of China's Hubei province, and has since spread globally, resulting in the ongoing 2019–2020 corona virus pandemic. SARS-CoV-2 is closely related to the original SARS-CoV. It is thought to have a zoonotic origin. The virus is primarily spread between people during close contact, often via small droplets produced by coughing, sneezing or talking. People may also become infected by touching a contaminated surface and then touching their face. COVID-19 patients currently remain the primary source of infection. An epidemiological survey indicated that the general population is susceptible to SARS-CoV-2. The spectrum of this disease ranges from mild to life-threatening. Fever is the most common symptom, although older people and those with comorbidities may experience fever later in the disease. Other common symptoms include cough, loss of appetite, fatigue, shortness of breath, sputum production, and muscle and joint pains. Symptoms such as nausea, vomiting and diarrhea have been observed in varying percentages. Some cases might progress promptly to acute respiratory distress syndrome (ARDS) and/or multiple organ function failure. Asymptomatic carriers and those in the incubation period may also be infectious. AIM. To determine the epidemiological and clinical characteristics of patients presenting with COVID-19 at the screening clinic of a tertiary care hospital in Peshawar, Pakistan. METHODOLOGY. In this descriptive study, we analysed data of patients presenting to a newly established Covid-19 screening clinic in Rehman Medical Institute. Anyone who reported with new onset fever and/or cough was tested for SARS-CoV-2 in the screening clinic. We documented and analysed demographic, epidemiological and clinical characteristics, which included age, sex, travel history, clinical features, comorbidities and laboratory data of patients confirmed by real-time reverse-transcription (RT)-PCR at Rehman Medical Institute, Peshawar, Pakistan from 15 March till 21 April 2020. Paired specimens of throat swabs and nasal swabs were obtained from 845 patients, ribonucleic acid (RNA) was extracted and tested for SARS-CoV-2 by the RT-PCR assay. RESULTS. A total of 845 specimens were taken as described above. The positive rate for SARS-CoV-2 was about 14.3%. Male and older population had a significantly higher positive rate. Of the 121 patients infected with SARS-CoV-2, the mean age was 43.19 years (sd, 17.57) and the infections were more frequent among male gender accounting for 85 (70.25 %) patients. Common symptoms included fever (88 patients, 72 %), cough (72 patients, 59.5 %) and shortness of breath (69 patients, 57 %). Twenty-two (18 %) patients had recent travel history outside Pakistan in the previous 14 days, the majority of whom had returned back from Saudi Arabia. CONCLUSION. In this single-centre, prospective, descriptive study, fever, cough and shortness of breath were the most common symptoms. Old age (>50 years), chronic underlying comorbidities and travel history may be risk factors. Therefore, we concluded that viral nucleic acid amplification tests (NAAT) played an important role in identifying SARS-CoV-2 infection in a screening clinic, which helped with isolation and cohorting of these patients.

J Med Microbiol2020       LitCov and CORD-19
10Health professionals facing the COVID-19 pandemic: What are the mental health risks?  

RÉSUMÉ Objectifs: La pandémie de la maladie à coronavirus (COVID-19) a provoqué une crise sanitaire majeure et mis en quarantaine la moitié de la population planétaire. En France, elle a provoqué une réorganisation en urgence de l’offre de soins mobilisant les soignants dans un climat d’incertitude. L'objectif du présent article est de faire le point sur les risques associés à l’exposition des soignants au COVID-19 pour leur santé mentale. Méthodes: Les auteurs ont conduit une revue de la littérature internationale tenant compte des données des précédentes épidémies (SARS-CoV-1, H1N1) et des données plus récentes concernant le COVID-19. Résultats: Les caractéristiques de cette pandémie (rapidité de diffusion, connaissances incertaines, sévérité, morts de soignants) ont installé un climat anxiogène. Des facteurs organisationnels peuvent être source de stress : déficit d’équipement de protection individuel, réaffectation de postes, manque de communication, manque de matériels de soins, bouleversement de la vie quotidienne familiale et sociale. D’autres facteurs de risque sont identifiés comme l’absence de soutien, la crainte de contaminer un proche, l’isolement ou la stigmatisation sociale, le haut niveau de stress au travail, ou les patterns d’attachement insécure. Les soignants ont ainsi un risque augmenté d’anxiété, de dépression, d’épuisement, d’addiction et de trouble de stress post-traumatique. Conclusions: Cette crise sanitaire devrait nous aider à mieux comprendre la vulnérabilité des soignants à la souffrance psychologique afin de renforcer les stratégies de prévention primaire et la formation aux enjeux psychologiques des soins, de la relation, et de la gestion des situations de crises sanitaires. ABSTRACT Objectives: The coronavirus disease 2019 (COVID-19) pandemic has caused major sanitary crisis worldwide. Half of the world has been placed in quarantine. In France, this large-scale health crisis urgently triggered the restructuring and reorganization of health service delivery to support emergency services, medical intensive care units and continuing care units. Health professionals mobilized all their resources to provide emergency aid in a general climate of uncertainty. Concerns about the mental health, psychological adjustment, and recovery of health care workers treating and caring for patients with COVID-19 are now arising. The goal of the present article is to provide an up-to-date information on potential mental health risks associated with exposure of health professionals to the COVID-19 pandemic. Methods: Authors performed a narrative review identifying relevant results in the scientific and medical literature considering previous epidemics of 2003 (SARS-CoV-1) and 2009 (H1N1) with the more recent data about the COVID-19 pandemic. We highlighted most relevant data concerning the disease characteristics, the organizational factors and personal factors that may contribute to developing psychological distress and other mental health symptoms. Results: The disease characteristics of the current COVID-19 pandemic provoked a generalized climate of wariness and uncertainty, particularly among health professionals, due to a range of causes such as the rapid spread of COVID-19, the severity of symptoms it can cause in a segment of infected individuals, the lack of knowledge of the disease, and deaths among health professionals. Stress may also be caused by organizational factors, such as depletion of personal protection equipment, concern about not being able to provide competent care if deployed to new area, concern about rapidly changing information, lack of access to up-to-date information and communication, lack of specific drugs, the shortage of ventilators and intensive care unit beds necessary to care for the surge of critically ill patients, and significant change in their daily social and family life. Further risk factors have been identified, including feelings of being inadequately supported, concerns about health of self, fear of taking home infection to family members or others, and not having rapid access to testing through occupational health if needed, being isolated, feelings of uncertainty and social stigmatization, overwhelming workload, or insecure attachment. Additionally, we discussed positive social and organizational factors that contribute to enhance resilience in the face of the pandemic. There is a consensus in all the relevant literature that health care professionals are at an increased risk of high levels of stress, anxiety, depression, burnout, addiction and post-traumatic stress disorder, which could have long-term psychological implications. Conclusions: In the long run, this tragic health crisis should significantly enhance our understanding of the mental health risk factors among the health care professionals facing the COVID-19 pandemic. Reporting information such as this is essential to plan future prevention strategies. Protecting health care professionals is indeed an important component of public health measures to address large-scale health crisis. Thus, interventions to promote mental well-being in health care professionals exposed to COVID-19 need to be immediately implemented, and to strengthen prevention and response strategies by training health care professionals on mental help and crisis management.

Encephale2020       LitCov and CORD-19
11A novel coronavirus associated with severe acute respiratory syndrome  

N/A

N Engl J Med2003       CORD-19
12Identification of a novel coronavirus in patients with severe acute respiratory syndrome  

N/A

N Engl J Med2003       CORD-19
13Characteristics of and Important Lessons From the COVID-19 Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention  

N/A

JAMA2020       LitCov and CORD-19
14Travel-related control measures to contain the COVID-19 pandemic: a rapid review  

N/A

Cochrane Database Syst Rev2020       LitCov and CORD-19
15A pneumonia outbreak associated with a new coronavirus of probable bat origin  

Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats(1–4). Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans(5–7). Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV.

Nature2020       LitCov and CORD-19
16Characterization of a novel coronavirus associated with severe acute respiratory syndrome  

N/A

Science2003       CORD-19
17SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor  

The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.

Cell2020       LitCov and CORD-19
18Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia  

BACKGROUND: The initial cases of novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) occurred in Wuhan, Hubei Province, China, in December 2019 and January 2020. We analyzed data on the first 425 confirmed cases in Wuhan to determine the epidemiologic characteristics of NCIP. METHODS: We collected information on demographic characteristics, exposure history, and illness timelines of laboratory-confirmed cases of NCIP that had been reported by January 22, 2020. We described characteristics of the cases and estimated the key epidemiologic time-delay distributions. In the early period of exponential growth, we estimated the epidemic doubling time and the basic reproductive number. RESULTS: Among the first 425 patients with confirmed NCIP, the median age was 59 years and 56% were male. The majority of cases (55%) with onset before January 1, 2020, were linked to the Huanan Seafood Wholesale Market, as compared with 8.6% of the subsequent cases. The mean incubation period was 5.2 days (95% confidence interval [CI], 4.1 to 7.0), with the 95th percentile of the distribution at 12.5 days. In its early stages, the epidemic doubled in size every 7.4 days. With a mean serial interval of 7.5 days (95% CI, 5.3 to 19), the basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9). CONCLUSIONS: On the basis of this information, there is evidence that human-to-human transmission has occurred among close contacts since the middle of December 2019. Considerable efforts to reduce transmission will be required to control outbreaks if similar dynamics apply elsewhere. Measures to prevent or reduce transmission should be implemented in populations at risk. (Funded by the Ministry of Science and Technology of China and others.)

N Engl J Med2020       LitCov and CORD-19
19The Genome sequence of the SARS-associated coronavirus  

N/A

Science2003       CORD-19
20Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy  

N/A

JAMA2020       LitCov and CORD-19
21Building a sustainable rural physician workforce  

N/A

Med J Aust2021       CORD-19
22The psychological impact of quarantine and how to reduce it: rapid review of the evidence  

Summary The December, 2019 coronavirus disease outbreak has seen many countries ask people who have potentially come into contact with the infection to isolate themselves at home or in a dedicated quarantine facility. Decisions on how to apply quarantine should be based on the best available evidence. We did a Review of the psychological impact of quarantine using three electronic databases. Of 3166 papers found, 24 are included in this Review. Most reviewed studies reported negative psychological effects including post-traumatic stress symptoms, confusion, and anger. Stressors included longer quarantine duration, infection fears, frustration, boredom, inadequate supplies, inadequate information, financial loss, and stigma. Some researchers have suggested long-lasting effects. In situations where quarantine is deemed necessary, officials should quarantine individuals for no longer than required, provide clear rationale for quarantine and information about protocols, and ensure sufficient supplies are provided. Appeals to altruism by reminding the public about the benefits of quarantine to wider society can be favourable.

Lancet2020       LitCov and CORD-19
23Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus  

Spike (S) proteins of coronaviruses, including the coronavirus that causes severe acute respiratory syndrome (SARS), associate with cellular receptors to mediate infection of their target cells(1,2). Here we identify a metallopeptidase, angiotensin-converting enzyme 2 (ACE2)(3,4), isolated from SARS coronavirus (SARS-CoV)-permissive Vero E6 cells, that efficiently binds the S1 domain of the SARS-CoV S protein. We found that a soluble form of ACE2, but not of the related enzyme ACE1, blocked association of the S1 domain with Vero E6 cells. 293T cells transfected with ACE2, but not those transfected with human immunodeficiency virus-1 receptors, formed multinucleated syncytia with cells expressing S protein. Furthermore, SARS-CoV replicated efficiently on ACE2-transfected but not mock-transfected 293T cells. Finally, anti-ACE2 but not anti-ACE1 antibody blocked viral replication on Vero E6 cells. Together our data indicate that ACE2 is a functional receptor for SARS-CoV. SUPPLEMENTARY INFORMATION: The online version of this article (doi:10.1038/nature02145) contains supplementary material, which is available to authorized users.

Nature2003       CORD-19
24Prevalence of and Risk Factors Associated With Mental Health Symptoms Among the General Population in China During the COVID-19 Pandemic  

IMPORTANCE: People exposed to coronavirus disease 2019 (COVID-19) and a series of imperative containment measures could be psychologically stressed, yet the burden of and factors associated with mental health symptoms remain unclear. OBJECTIVE: To investigate the prevalence of and risk factors associated with mental health symptoms in the general population in China during the COVID-19 pandemic. DESIGN, SETTING, AND PARTICIPANTS: This large-sample, cross-sectional, population-based, online survey study was conducted from February 28, 2020, to March 11, 2020. It involved all 34 province-level regions in China and included participants aged 18 years and older. Data analysis was performed from March to May 2020. MAIN OUTCOMES AND MEASURES: The prevalence of symptoms of depression, anxiety, insomnia, and acute stress among the general population in China during the COVID-19 pandemic was evaluated using the Patient Health Questionnaire–9, Generalized Anxiety Disorder–7, Insomnia Severity Index, and Acute Stress Disorder Scale. Logistic regression analyses were used to explore demographic and COVID-19–related risk factors. RESULTS: Of 71 227 individuals who clicked on the survey link, 56 932 submitted the questionnaires, for a participation rate of 79.9%. After excluding the invalid questionnaires, 56 679 participants (mean [SD] age, 35.97 [8.22] years; 27 149 men [47.9%]) were included in the study; 39 468 respondents (69.6%) were aged 18 to 39 years. During the COVID-19 pandemic, the rates of mental health symptoms among the survey respondents were 27.9% (95% CI, 27.5%-28.2%) for depression, 31.6% (95% CI, 31.2%-32.0%) for anxiety, 29.2% (95% CI, 28.8%-29.6%) for insomnia, and 24.4% (95% CI, 24.0%-24.7%) for acute stress. Participants with confirmed or suspected COVID-19 and their family members or friends had a high risk for symptoms of depression (adjusted odds ratios [ORs], 3.27 [95% CI, 1.84-5.80] for patients; 1.53 [95% CI, 1.26-1.85] for family or friends), anxiety (adjusted ORs, 2.48 [95% CI, 1.43-4.31] for patients; 1.53 [95% CI, 1.27-1.84] for family or friends), insomnia (adjusted ORs, 3.06 [95% CI, 1.73-5.43] for patients; 1.62 [95% CI, 1.35-1.96] for family or friends), and acute stress (adjusted ORs, 3.50 [95% CI, 2.02-6.07] for patients; 1.77 [95% CI, 1.46-2.15] for family or friends). Moreover, people with occupational exposure risks and residents in Hubei province had increased odds of symptoms of depression (adjusted ORs, 1.96 [95% CI, 1.77-2.17] for occupational exposure; 1.42 [95% CI, 1.19-1.68] for Hubei residence), anxiety (adjusted ORs, 1.93 [95% CI, 1.75-2.13] for occupational exposure; 1.54 [95% CI, 1.30-1.82] for Hubei residence), insomnia (adjusted ORs, 1.60 [95% CI, 1.45-1.77] for occupational exposure; 1.20 [95% CI, 1.01-1.42] for Hubei residence), and acute stress (adjusted ORs, 1.98 [95% CI, 1.79-2.20] for occupational exposure; 1.49 [95% CI, 1.25-1.79] for Hubei residence). Both centralized quarantine (adjusted ORs, 1.33 [95% CI, 1.10-1.61] for depression; 1.46 [95% CI, 1.22-1.75] for anxiety; 1.63 [95% CI, 1.36-1.95] for insomnia; 1.46 [95% CI, 1.21-1.77] for acute stress) and home quarantine (adjusted ORs, 1.30 [95% CI, 1.25-1.36] for depression; 1.28 [95% CI, 1.23-1.34] for anxiety; 1.24 [95% CI, 1.19-1.30] for insomnia; 1.29 [95% CI, 1.24-1.35] for acute stress) were associated with the 4 negative mental health outcomes. Being at work was associated with lower risks of depression (adjusted OR, 0.85 [95% CI, 0.79-0.91]), anxiety (adjusted OR, 0.92 [95% CI, 0.86-0.99]), and insomnia (adjusted OR, 0.87 [95% CI, 0.81-0.94]). CONCLUSIONS AND RELEVANCE: The results of this survey indicate that mental health symptoms may have been common during the COVID-19 outbreak among the general population in China, especially among infected individuals, people with suspected infection, and people who might have contact with patients with COVID-19. Some measures, such as quarantine and delays in returning to work, were also associated with mental health among the public. These findings identify populations at risk for mental health problems during the COVID-19 pandemic and may help in implementing mental health intervention policies in other countries and regions.

JAMA Netw Open2020       LitCov and CORD-19
25Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries  

N/A

CA Cancer J Clin2021       CORD-19
26Coronavirus as a possible cause of severe acute respiratory syndrome  

BACKGROUND: An outbreak of severe acute respiratory syndrome (SARS) has been reported in Hong Kong. We investigated the viral cause and clinical presentation among 50 patients. METHODS: We analysed case notes and microbiological findings for 50 patients with SARS, representing more than five separate epidemiologically linked transmission clusters. We defined the clinical presentation and risk factors associated with severe disease and investigated the causal agents by chest radiography and laboratory testing of nasopharyngeal aspirates and sera samples. We compared the laboratory findings with those submitted for microbiological investigation of other diseases from patients whose identity was masked. FINDINGS: Patients' age ranged from 23 to 74 years. Fever, chills, myalgia, and cough were the most frequent complaints. When compared with chest radiographic changes, respiratory symptoms and auscultatory findings were disproportionally mild. Patients who were household contacts of other infected people and had older age, lymphopenia, and liver dysfunction were associated with severe disease. A virus belonging to the family Coronaviridae was isolated from two patients. By use of serological and reverse-transcriptase PCR specific for this virus, 45 of 50 patients with SARS, but no controls, had evidence of infection with this virus. INTERPRETATION: A coronavirus was isolated from patients with SARS that might be the primary agent associated with this disease. Serological and molecular tests specific for the virus permitted a definitive laboratory diagnosis to be made and allowed further investigation to define whether other cofactors play a part in disease progression.

Lancet2003       CORD-19
27Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study  

BACKGROUND: An ongoing outbreak of pneumonia associated with the severe acute respiratory coronavirus 2 (SARS-CoV-2) started in December, 2019, in Wuhan, China. Information about critically ill patients with SARS-CoV-2 infection is scarce. We aimed to describe the clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia. METHODS: In this single-centered, retrospective, observational study, we enrolled 52 critically ill adult patients with SARS-CoV-2 pneumonia who were admitted to the intensive care unit (ICU) of Wuhan Jin Yin-tan hospital (Wuhan, China) between late December, 2019, and Jan 26, 2020. Demographic data, symptoms, laboratory values, comorbidities, treatments, and clinical outcomes were all collected. Data were compared between survivors and non-survivors. The primary outcome was 28-day mortality, as of Feb 9, 2020. Secondary outcomes included incidence of SARS-CoV-2-related acute respiratory distress syndrome (ARDS) and the proportion of patients requiring mechanical ventilation. FINDINGS: Of 710 patients with SARS-CoV-2 pneumonia, 52 critically ill adult patients were included. The mean age of the 52 patients was 59·7 (SD 13·3) years, 35 (67%) were men, 21 (40%) had chronic illness, 51 (98%) had fever. 32 (61·5%) patients had died at 28 days, and the median duration from admission to the intensive care unit (ICU) to death was 7 (IQR 3–11) days for non-survivors. Compared with survivors, non-survivors were older (64·6 years [11·2] vs 51·9 years [12·9]), more likely to develop ARDS (26 [81%] patients vs 9 [45%] patients), and more likely to receive mechanical ventilation (30 [94%] patients vs 7 [35%] patients), either invasively or non-invasively. Most patients had organ function damage, including 35 (67%) with ARDS, 15 (29%) with acute kidney injury, 12 (23%) with cardiac injury, 15 (29%) with liver dysfunction, and one (2%) with pneumothorax. 37 (71%) patients required mechanical ventilation. Hospital-acquired infection occurred in seven (13·5%) patients. INTERPRETATION: The mortality of critically ill patients with SARS-CoV-2 pneumonia is considerable. The survival time of the non-survivors is likely to be within 1–2 weeks after ICU admission. Older patients (>65 years) with comorbidities and ARDS are at increased risk of death. The severity of SARS-CoV-2 pneumonia poses great strain on critical care resources in hospitals, especially if they are not adequately staffed or resourced. FUNDING: None.

Lancet Respir Med2020       LitCov and CORD-19
28Virtualized clinical studies to assess the natural history and impact of gut microbiome modulation in non-hospitalized patients with mild to moderate COVID-19 a randomized, open-label, prospective study with a parallel group study evaluating the physiologic effects of KB109 on gut microbiota structu  

OBJECTIVES: These 2 parallel studies (K031 and K032) aim to evaluate the safety of KB109 in addition to supportive self-care (SSC) compared with SSC alone in outpatients with mild to moderate coronavirus disease 2019 (COVID-19). KB109 is a novel synthetic glycan that was formulated to modulate the gut microbiome composition and metabolic output in order to increase beneficial short-chain fatty acid (SCFA) production in the gut. The K031 study is designed to evaluate the safety of KB109 and characterize its impact on the natural progression of COVID-19 in patients with mild to moderate disease. The K032 study is evaluating the effect of KB109 on the gut microbiota structure and function in this same patient population. Additionally, both studies are evaluating measures of health care utilization, quality of life (QOL), laboratory indices, biomarkers of inflammation, and serological measures of immunity in patients who received SSC alone or with KB109. Noteworthy aspects of these outpatient studies include study design measures aimed at limiting in-person interactions to minimize the risk of infection spread, such as use of online diaries, telemedicine, and at-home sample collection. STUDY DESIGN: K031 and K032 are randomized, controlled, open-label, clinical food studies. PARTICIPANTS: Inclusion Criteria: • Adults ≥18 years of age • Patients willing and able to give informed consent • Screening/randomization telemedicine visit within 2 days of testing positive test for COVID-19 ○ In K031 study, symptomatic patients at COVID-19 testing must report new or worsening symptoms at baseline that have not been present for more than 5 days ▪ Cardinal COVID-19 symptoms include fever, chills/repeated shaking with chills, cough, shortness of breath, headache, muscle pain, anosmia/ageusia, and sore throat. The 5 additional symptoms include gastrointestinal (GI) disturbance/symptoms (other than diarrhea), diarrhea, fatigue, nasal congestion, and chest tightness ○ In K031, at COVID-19 testing, pre-symptomatic patients must report new cardinal COVID-19 symptoms within 7 days of a positive test and they must be screened and randomized within 5 days of developing symptoms • Mild to moderate COVID-19 and self-reported outpatient management ○ In K032, mild to moderate COVID-19 was defined as having the following symptoms for no more than 72 hours before COVID-19 testing: a self- reported fever or cough (new or exacerbated) or presence of at least 2 of the following: anosmia, sore throat, or nasal congestion • Ability to adhere to the study visit schedule and other protocol requirements • Consistent internet or cell phone access with a data plan and access to a smartphone, tablet, or computer • The K031 and K032 studies are currently being conducted at 17 clinical institutions throughout the United States. Exclusion Criteria: • In the primary investigator’s (PI) judgement, patients likely to require hospitalization for COVID-19 • Patients who are hospitalized for in-patient treatment or currently being evaluated for potential hospitalization at the time of informed consent for conditions other than COVID-19 • History of chronic lung disease with chronic hypoxia • History of documented cirrhosis or end-stage liver disease • Ongoing requirement for oxygen therapy • Shortness of breath in resting position • Diagnosis of sleep apnea requiring bilevel positive airway pressure (BIPAP)/continuous positive airway pressure (CPAP) • Female patients who are pregnant, trying to become pregnant, or lactating • Concurrent use of immunomodulatory agent within 12 months; systemic antibiotics, antifungals, or antivirals for treatment of active infection within 28 days; systemic immunosuppressive therapy within 3 months; or drugs or other compounds that modulate GI motility (eg, stool softeners, laxatives, or fiber supplements) taken currently, or within 7 days. Antacid (histamine 2 blockers and proton pump inhibitors) and antidiarrheal agents are not prohibited • History of GI surgery (6 months prior to randomization), including but not limited to bariatric surgery and bowel resection, or history of, or active GI disease(s) that may affect assessment of tolerability, including but not limited to inflammatory bowel disease, irritable bowel syndrome, autoimmune disease, or GI malignancy • Participation in an interventional clinical trial or use of any investigational agent within 30 days before randomization • Clinically significant or uncontrolled concomitant medical condition that would put the patient at risk or jeopardize the objectives of the study in the opinion of the PI • In the opinion of the PI, patient unlikely for any reason to be able to comply with study procedures • Contraindications, sensitivities, or known allergy to the use of the study product or its components INTERVENTION AND COMPARATOR: Patients will be randomized (1,1) to receive either SSC and KB109 or SSC alone. During SSC, patients should follow the steps as instructed by their healthcare provider to care for themselves and protect other people in the home and community from potentially contracting COVID-19. Management of COVID-19-related symptoms with over-the-counter cough, cold, and anti-pyretic medications by patients is permitted in accordance with the medications’ respective drug facts label or as instructed by the patient’s healthcare provider. Following randomization, patients assigned to receive KB109 and SSC will receive a Kaleido Biosciences, Inc at-home study kit including a thermometer, pulse oximeter, and KB109. During the Intake Period (days 1–14), KB109 will be reconstituted in water by the patient and consumed by the patient twice daily (at least 8 hours apart), following an up-titration dosing schedule: Days 1 to 2: 9 g twice daily for a total daily dose of 18 g Days 3 to 4: 18 g twice daily for a total daily dose of 36 g Days 5 to 14: 36 g twice daily for a total daily dose of 72 g During the intake period, patients will record their daily COVID-19–related symptoms, selected COVID-19 signs (as self-measured using the provided thermometer and pulse oximeter), responses to questions related to QOL measures, health care use measures, and concomitant medications taken in the previous 24 hours. Wellness visits by telephone will be conducted between days 1 and 14 to follow up on patient’s health status and to ascertain compliance with KB109 and completion of questions. On day 14, all patients will undergo a telemedicine visit where the following will be conducted: abbreviated physical examination, assessment of safety and other protocol-specified measures of health, and an evaluation of whether follow-up treatment is recommended owing to a progression of COVID-19 symptoms. If feasible, blood samples for clinical chemistries, biomarkers and serological measure of immunity, and nasal/oropharyngeal swabs for quantitative viral load assessments will be collected. Beginning on day 15, patients in both groups will enter the follow-up period (days 15–35) where COVID-19 signs, symptoms, and health care use indices will be collected. Wellness visits by telephone will be conducted on days 21, 28, and 35 to follow-up on the patient’s health status. On day 35, all patients will undergo a telemedicine visit where the same information as the day 14 telemedicine visit will be collected, including any blood samples. MAIN OUTCOMES: The primary outcome for the K031 and K032 studies is to evaluate the safety of KB109 in addition to SSC compared with SSC alone in outpatients with mild to moderate COVID-19 by assessing the number of patients experiencing KB109-related treatment-emergent adverse events (TEAEs) during the study. K031 will also evaluate duration of symptoms among outpatients with mild to moderate COVID-19. This will be as an assessment made during the intake and/or follow-up periods of the following: • Time to resolution of the 13 overall and the 8 cardinal COVID-19–related symptoms from day 1 until the day at which the composite score of the 13 overall and 8 cardinal COVID-19–related symptoms becomes 0 or 1 and remains at 0 or 1 for the rest of the intake period and for the follow-up period • Proportion of patients with a reduction from baseline in each of the 13 overall COVID-19–related symptoms • Proportion of patients in whom symptoms (present at baseline) become absent for each of the 13 overall COVID-19–related symptoms • Change from baseline in the overall composite score of the 13 overall COVID-19–related symptoms and the 8 cardinal COVID-19–related symptoms • Time to resolution of fever (defined as from day 1 until the day at which a patient’s daily maximum temperature achieves and remains below 100.4°F without antipyretic medication) • Proportion of patients with oxygen saturation <95% and <98% on days 14 and 35 • Measures collected from the health care provider wellness visits • Proportion of patients experiencing hospital admissions (all cause and COVID-19–related) • Health care use K032 will evaluate the effect of KB109 in addition to SSC compared with SSC alone on the gut microbiota structure and function in outpatients with mild to moderate COVID-19. Before days 1, 14, and 35, microbiota structure (eg, magnitude of change in gut microbiome structure, composition of gut microbiome) will be analysed by methods such as nucleic acid sequencing and gut microbiome function will be analysed via levels of stool inflammatory biomarkers (eg, lipocalin) and gut microbiome metabolites (eg, SCFA). The health of outpatients with mild to moderate COVID-19 will be evaluated during the intake and follow- up periods by: measures of QOL; measures collected from the healthcare provider wellness visits; the proportion of patients experiencing hospital admissions; health care use, the proportions of patients with oxygen saturation <95% and <98%, and the proportion of patients with temperature below 100.4 °F without an anti-pyretic medication. Potential exploratory outcome measures may include: changes from baseline (day 1) in laboratory measures, specific biomarkers of infection, serology, inflammation (eg, D-dimer, lipocalin, cytokines, IgM/IgG sero-conversion, and neutralization assays), and viral load in outpatients with mild to moderate COVID-19 in the presence and absence of KB109. RANDOMISATION: All patients deemed eligible for the studies will be randomized in a 1:1 ratio to KB109 in addition to SSC or SSC alone group using an interactive response technology system. Randomization will be stratified by study site/center, age groups (≥18–<45 years, ≥45–<65 years, ≥65 years), and comorbidity status (yes, no). BLINDING (MASKING): These studies are open-label; therefore, no blinding is necessary. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): K031 will enroll approximately 350 to 400 (175–200 patients per group) whereas K032 will enroll approximately 50 patients (25 per group). STUDY STATUS: K031 protocol version 4, December 9, 2020; recruitment started in August, 2020, and the study is estimated to be completed in March 2021. This study is active and enrollment was completed in January, 2021. K032 protocol version 2, June 30, 2020; recruitment is estimated to start in July, 2020. This study is recruiting and the study is estimated to be completed in March 2021. STUDY REGISTRATION: K031 is registered with the US National Library of Medicine, Identifier NCT04414124 as of June 4, 2020. K032 is registered with the US National Library of Medicine, Identifier NCT04486482 as of July 24, 2020. FULL PROTOCOL: The full protocols are attached as additional files (Additional files 1 and 2), accessible from the ClinicalTrials.gov website. In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this letter serves as a summary of the key elements of the full protocols. The study protocols have been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional files 3 and 4). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13063-021-05157-0.

Trials2021       LitCov and CORD-19
29Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding  

Summary Background In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). As of Jan 26, 2020, more than 2000 cases of 2019-nCoV infection have been confirmed, most of which involved people living in or visiting Wuhan, and human-to-human transmission has been confirmed. Methods We did next-generation sequencing of samples from bronchoalveolar lavage fluid and cultured isolates from nine inpatients, eight of whom had visited the Huanan seafood market in Wuhan. Complete and partial 2019-nCoV genome sequences were obtained from these individuals. Viral contigs were connected using Sanger sequencing to obtain the full-length genomes, with the terminal regions determined by rapid amplification of cDNA ends. Phylogenetic analysis of these 2019-nCoV genomes and those of other coronaviruses was used to determine the evolutionary history of the virus and help infer its likely origin. Homology modelling was done to explore the likely receptor-binding properties of the virus. Findings The ten genome sequences of 2019-nCoV obtained from the nine patients were extremely similar, exhibiting more than 99·98% sequence identity. Notably, 2019-nCoV was closely related (with 88% identity) to two bat-derived severe acute respiratory syndrome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, collected in 2018 in Zhoushan, eastern China, but were more distant from SARS-CoV (about 79%) and MERS-CoV (about 50%). Phylogenetic analysis revealed that 2019-nCoV fell within the subgenus Sarbecovirus of the genus Betacoronavirus, with a relatively long branch length to its closest relatives bat-SL-CoVZC45 and bat-SL-CoVZXC21, and was genetically distinct from SARS-CoV. Notably, homology modelling revealed that 2019-nCoV had a similar receptor-binding domain structure to that of SARS-CoV, despite amino acid variation at some key residues. Interpretation 2019-nCoV is sufficiently divergent from SARS-CoV to be considered a new human-infecting betacoronavirus. Although our phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans. Importantly, structural analysis suggests that 2019-nCoV might be able to bind to the angiotensin-converting enzyme 2 receptor in humans. The future evolution, adaptation, and spread of this virus warrant urgent investigation. Funding National Key Research and Development Program of China, National Major Project for Control and Prevention of Infectious Disease in China, Chinese Academy of Sciences, Shandong First Medical University.

Lancet2020       LitCov and CORD-19
30A Practical Approach to the Management of Cancer Patients During the Novel COVID-19 Pandemic: An International Collaborative Group  

The outbreak of coronavirus disease 2019 (COVID‐19) has rapidly spread globally since being identified as a public health emergency of major international concern and has now been declared a pandemic by the World Health Organization (WHO). In December 2019, an outbreak of atypical pneumonia, known as COVID‐19, was identified in Wuhan, China. The newly identified zoonotic coronavirus, severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2), is characterized by rapid human‐to‐human transmission. Many cancer patients frequently visit the hospital for treatment and disease surveillance. They may be immunocompromised due to the underlying malignancy or anticancer therapy and are at higher risk of developing infections. Several factors increase the risk of infection, and cancer patients commonly have multiple risk factors. Cancer patients appear to have an estimated twofold increased risk of contracting SARS‐CoV‐2 than the general population. With the WHO declaring the novel coronavirus outbreak a pandemic, there is an urgent need to address the impact of such a pandemic on cancer patients. This include changes to resource allocation, clinical care, and the consent process during a pandemic. Currently and due to limited data, there are no international guidelines to address the management of cancer patients in any infectious pandemic. In this review, the potential challenges associated with managing cancer patients during the COVID‐19 infection pandemic will be addressed, with suggestions of some practical approaches. IMPLICATIONS FOR PRACTICE: The main management strategies for treating cancer patients during the COVID‐19 epidemic include clear communication and education about hand hygiene, infection control measures, high‐risk exposure, and the signs and symptoms of COVID‐19. Consideration of risk and benefit for active intervention in the cancer population must be individualized. Postponing elective surgery or adjuvant chemotherapy for cancer patients with low risk of progression should be considered on a case‐by‐case basis. Minimizing outpatient visits can help to mitigate exposure and possible further transmission. Telemedicine may be used to support patients to minimize number of visits and risk of exposure. More research is needed to better understand SARS‐CoV‐2 virology and epidemiology.

Oncologist2020       LitCov and CORD-19
31Presenting Characteristics, Comorbidities and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area  

N/A

JAMA2020       LitCov and CORD-19
32COVID-19: consider cytokine storm syndromes and immunosuppression  

Lancet2020       LitCov and CORD-19
33THE IMPACT OF THE COVID-19 PANDEMIC ON SCHIZOPHRENIA PATIENTS  

N/A

Turk Psikiyatri Derg2021       LitCov and CORD-19
34Effectiveness and cost-effectiveness of four different strategies for SARS-CoV-2 surveillance in the general population (CoV-Surv Study): a structured summary of a study protocol for a cluster-randomised, two-factorial controlled trial  

OBJECTIVES: In this cluster-randomised controlled study (CoV-Surv Study), four different “active” SARS-CoV-2 testing strategies for general population surveillance are evaluated for their effectiveness in determining and predicting the prevalence of SARS-CoV-2 infections in a given population. In addition, the costs and cost-effectiveness of the four surveillance strategies will be assessed. Further, this trial is supplemented by a qualitative component to determine the acceptability of each strategy. Findings will inform the choice of the most effective, acceptable and affordable strategy for SARS-CoV-2 surveillance, with the most effective and cost-effective strategy becoming part of the local public health department’s current routine health surveillance activities. Investigating its everyday performance will allow us to examine the strategy’s applicability to real time prevalence prediction and the usefulness of the resulting information for local policy makers to implement countermeasures that effectively prevent future nationwide lockdowns. The authors would like to emphasize the importance and relevance of this study and its expected findings in the context of population-based disease surveillance, especially in respect to the current SARS-CoV-2 pandemic. In Germany, but also in many other countries, COVID-19 surveillance has so far largely relied on passive surveillance strategies that identify individuals with clinical symptoms, monitor those cases who then tested positive for the virus, followed by tracing of individuals in close contact to those positive cases. To achieve higher effectiveness in population surveillance and to reliably predict the course of an outbreak, screening and monitoring of infected individuals without major symptoms (about 40% of the population) will be necessary. While current testing capacities are also used to identify such asymptomatic cases, this rather passive approach is not suitable in generating reliable population-based estimates of the prevalence of asymptomatic carriers to allow any dependable predictions on the course of the pandemic. To better control and manage the SARS-CoV-2 pandemic, current strategies therefore need to be complemented by an active surveillance of the wider population, i.e. routinely conducted testing and monitoring activities to identify and isolate infected individuals regardless of their clinical symptoms. Such active surveillance strategies will enable more effective prevention of the spread of the virus as they can generate more precise population-based parameters during a pandemic. This essential information will be required in order to determine the best strategic and targeted short-term countermeasures to limit infection spread locally. TRIAL DESIGN: This trial implements a cluster-randomised, two-factorial controlled, prospective, interventional, single-blinded design with four study arms, each representing a different SARS-CoV-2 testing and surveillance strategy. PARTICIPANTS: Eligible are individuals age 7 years or older living in Germany’s Rhein-Neckar Region who consent to provide a saliva sample (all four arms) after completion of a brief questionnaire (two arms only). For the qualitative component, different samples of study participants and non-participants (i.e. eligible for study, but refuse to participate) will be identified for additional interviews. For these interviews, only individuals age 18 years or older are eligible. INTERVENTION AND COMPARATOR: Of the four surveillance strategies to be assessed and compared, Strategy A1 is considered the gold standard for prevalence estimation and used to determine bias in other arms. To determine the cost-effectiveness, each strategy is compared to status quo, defined as the currently practiced passive surveillance approach. Strategy A1: Individuals (one per household) receive information and study material by mail with instructions on how to produce a saliva sample and how to return the sample by mail. Once received by the laboratory, the sample is tested for SARS-CoV-2 using Reverse Transcription Loop-mediated Isothermal Amplification (RT-LAMP). Strategy A2: Individuals (one per household) receive information and study material by mail with instructions on how to produce their own as well as saliva samples from each household member and how to return these samples by mail. Once received by the laboratory, the samples are tested for SARS-CoV-2 using RT-LAMP. Strategy B1: Individuals (one per household) receive information by mail on how to complete a brief pre-screening questionnaire which asks about COVID-19 related clinical symptoms and risk exposures. Only individuals whose pre-screening score crosses a defined threshold, will then receive additional study material by mail with instructions on how to produce a saliva sample and how to return the sample by mail. Once received by the laboratory, the saliva sample is tested for SARS-CoV-2 using RT-LAMP. Strategy B2: Individuals (one per household) receive information by mail on how to complete a brief pre-screening questionnaire which asks about COVID-19 related clinical symptoms. Only individuals whose pre-screening score crosses a defined threshold, will then receive additional study material by mail with instructions how to produce their own as well as saliva samples from each household member and how to return these samples by mail. Once received by the laboratory, the samples are tested for SARS-CoV-2 using RT-LAMP. In each strategy, RT-LAMP positive samples are additionally analyzed with qPCR in order to minimize the number of false positives. MAIN OUTCOMES: The identification of the one best strategy will be determined by a set of parameters. Primary outcomes include costs per correctly screened person, costs per positive case, positive detection rate, and precision of positive detection rate. Secondary outcomes include participation rate, costs per asymptomatic case, prevalence estimates, number of asymptomatic cases per study arm, ratio of symptomatic to asymptomatic cases per study arm, participant satisfaction. Additional study components (not part of the trial) include cost effectiveness of each of the four surveillance strategies compared to passive monitoring (i.e. status quo), development of a prognostic model to predict hospital utilization caused by SARS-CoV-2, time from test shipment to test application and time from test shipment to test result, and perception and preferences of the persons to be tested with regard to test strategies. RANDOMISATION: Samples are drawn in three batches of three continuous weeks. Randomisation follows a two-stage process. First, a total of 220 sampling points have been allocated to the three different batches. To obtain an integer solution, the Cox-algorithm for controlled rounding has been used. Afterwards, sample points have been drawn separately per batch, following a probability proportional to size (PPS) random sample. Second, for each cluster the same number of residential addresses is randomly sampled from the municipal registries (self-weighted sample of individuals). The 28,125 addresses drawn per municipality are then randomly allocated to the four study arms A1, A2, B1, and B2 in the ratio 5 to 2.5 to 14 to 7 based on the expected response rates in each arm and the sensitivity and specificity of the pre-screening tool as applied in strategy B1 and B2. Based on the assumptions, this allocation should yield 2500 saliva samples in each strategy. Although a municipality can be sampled by multiple batches and the overall number of addresses per municipality might vary, the number of addresses contacted in each arm is kept constant. BLINDING (MASKING): The design is single-blinded, meaning the staff conducting the SARS-CoV-2 tests are unaware of the study arm assignment of each single participant and test sample. SAMPLE SIZES: Total sample size for the trial is 10,000 saliva samples equally allocated to the four study arms (i.e. 2,500 participants per arm). For the qualitative component, up to 60 in-depth interviews will be conducted with about 30 study participants (up to 15 in each arm A and B) and 30 participation refusers (up to 15 in each arm A and B) purposefully selected from the quantitative study sample to represent a variety of gender and ages to explore experiences with admission or rejection of study participation. Up to 25 asymptomatic SARS-CoV-2 positive study participants will be purposefully selected to explore the way in which asymptomatic men and women diagnosed with SARS-CoV-2 give meaning to their diagnosis and to the dialectic between feeling concurrently healthy and yet also being at risk for transmitting COVID-19. In addition, 100 randomly selected study participants will be included to explore participants’ perspective on testing processes and implementation. TRIAL STATUS: Final protocol version is “Surveillance_Studienprotokoll_03Nov2020_v1_2” from November 3, 2020. Recruitment started November 18, 2020 and is expected to end by or before December 31, 2020. TRIAL REGISTRATION: The trial is currently being registered with the German Clinical Trials Register (Deutsches Register Klinischer Studien), DRKS00023271 (https://www.drks.de/drks_web/navigate.do?navigationId=trial. HTML&TRIAL_ID=DRKS00023271). Retrospectively registered 30 November 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.

Trials2021       LitCov and CORD-19
35A prospective, randomized, single-blinded, crossover trial to investigate the effect of a wearable device in addition to a daily symptom diary for the Remote Early Detection of SARS-CoV-2 infections (COVID-RED): a structured summary of a study protocol for a randomized controlled trial  

OBJECTIVES: It is currently thought that most—but not all—individuals infected with SARS-CoV-2 develop symptoms, but the infectious period starts on average 2 days before the first overt symptoms appear. It is estimated that pre- and asymptomatic individuals are responsible for more than half of all transmissions. By detecting infected individuals before they have overt symptoms, wearable devices could potentially and significantly reduce the proportion of transmissions by pre-symptomatic individuals. Using laboratory-confirmed SARS-CoV-2 infections (detected via serology tests [to determine if there are antibodies against the SARS-CoV-2 in the blood] or SARS-CoV-2 infection tests such as polymerase chain reaction [PCR] or antigen tests) as the gold standard, we will determine the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for the following two algorithms to detect first time SARS-CoV-2 infection including early or asymptomatic infection: • The algorithm using Ava bracelet data when coupled with self-reported Daily Symptom Diary data (Wearable + Symptom Data Algo; experimental condition) • The algorithm using self-reported Daily Symptom Diary data alone (Symptom Only Algo; control condition) In addition, we will determine which of the two algorithms has superior performance characteristics for detecting SARS-CoV-2 infection including early or asymptomatic infection as confirmed by SARS-CoV-2 virus testing. TRIAL DESIGN: The trial is a randomized, single-blinded, two-period, two-sequence crossover trial. The study will start with an initial learning phase (maximum of 3 months), followed by period 1 (3 months) and period 2 (3 months). Subjects entering the study at the end of the recruitment period may directly start with period 1 and will not be part of the learning phase. Each subject will undergo the experimental condition (the Wearable + Symptom Data Algo) in either period 1 or period 2 and the control condition (Symptom Only Algo) in the other period. The order will be randomly assigned, resulting in subjects being allocated 1:1 to either sequence 1 (experimental condition first) or sequence 2 (control condition first). Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence. PARTICIPANTS: The trial will be conducted in the Netherlands. A target of 20,000 subjects will be enrolled. Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence. This results in approximately 6500 normal-risk individuals and 3500 high-risk individuals per sequence. Subjects will be recruited from previously studied cohorts as well as via public campaigns and social media. All data for this study will be collected remotely through the Ava COVID-RED app, the Ava bracelet, surveys in the COVID-RED web portal and self-sampling serology and PCR kits. More information on the study can be found in www.covid-red.eu. During recruitment, subjects will be invited to visit the COVID-RED web portal. After successfully completing the enrolment questionnaire, meeting eligibility criteria and indicating interest in joining the study, subjects will receive the subject information sheet and informed consent form. Subjects can enrol in COVID-RED if they comply with the following inclusion and exclusion criteria: Inclusion criteria: • Resident of the Netherlands • At least 18 years old • Informed consent provided (electronic) • Willing to adhere to the study procedures described in the protocol • Must have a smartphone that runs at least Android 8.0 or iOS 13.0 operating systems and is active for the duration of the study (in the case of a change of mobile number, the study team should be notified) • Be able to read, understand and write Dutch Exclusion criteria: • Previous positive SARS-CoV-2 test result (confirmed either through PCR/antigen or antibody tests; self-reported) • Current suspected (e.g. waiting for test result) COVID-19 infection or symptoms of a COVID-19 infection (self-reported) • Participating in any other COVID-19 clinical drug, vaccine or medical device trial (self-reported) • Electronic implanted device (such as a pacemaker; self-reported) • Pregnant at the time of informed consent (self-reported) • Suffering from cholinergic urticaria (per the Ava bracelet’s user manual; self-reported) • Staff involved in the management or conduct of this study INTERVENTION AND COMPARATOR: All subjects will be instructed to complete the Daily Symptom Diary in the Ava COVID-RED app daily, wear their Ava bracelet each night and synchronize it with the app each day for the entire period of study participation. Provided with wearable sensor and/or self-reported symptom data within the last 24 h, the Ava COVID-RED app’s underlying algorithms will provide subjects with a real-time indicator of their overall health and well-being. Subjects will see one of three messages, notifying them that no seeming deviations in symptoms and/or physiological parameters have been detected; some changes in symptoms and/or physiological parameters have been detected and they should self-isolate; or alerting them that deviations in their symptoms and/or physiological parameters could be suggestive of a potential COVID-19 infection and to seek additional testing. We will assess the intraperson performance of the algorithms in the experimental condition (Wearable + Symptom Data Algo) and control conditions (Symptom Only Algo). Note that both algorithms will also instruct to seek testing when any SARS-CoV-2 symptoms are reported in line with those defined by the Dutch national institute for public health and the environment ‘Rijksinstituut voor Volksgezondheid en Milieu’ (RIVM) guidelines. MAIN OUTCOMES: The trial will evaluate the use and performance of the Ava COVID-RED app and Ava bracelet, which uses sensors to measure breathing rate, pulse rate, skin temperature and heart rate variability for the purpose of early and asymptomatic detection and monitoring of SARS-CoV-2 in general and high-risk populations. Using laboratory-confirmed SARS-CoV-2 infections (detected via serology tests, PCR tests and/or antigen tests) as the gold standard, we will determine the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for each of the following two algorithms to detect first-time SARS-CoV-2 infection including early or asymptomatic infection: the algorithm using Ava bracelet data when coupled with the self-reported Daily Symptom Diary data and the algorithm using self-reported Daily Symptom Diary data alone. In addition, we will determine which of the two algorithms has superior performance characteristics for detecting SARS-CoV-2 infection including early or asymptomatic infection as confirmed by SARS-CoV-2 virus testing. The protocol contains an additional twenty secondary and exploratory objectives which address, among others, infection incidence rates, health resource utilization, symptoms reported by SARS-CoV-2-infected participants and the rate of breakthrough and asymptomatic SARS-CoV-2 infections among individuals vaccinated against COVID-19. PCR or antigen testing will occur when the subject receives a notification from the algorithm to seek additional testing. Subjects will be advised to get tested via the national testing programme and report the testing result in the Ava COVID-RED app and a survey. If they cannot obtain a test via the national testing programme, they will receive a nasal swab self-sampling kit at home, and the sample will be tested by PCR in a trial-affiliated laboratory. In addition, all subjects will be asked to take a capillary blood sample at home at baseline (between month 0 and 3.5 months after the start of subject recruitment), at the end of the learning phase (month 3; note that this sampling moment is skipped if a subject entered the study at the end of the recruitment period), period 1 (month 6) and period 2 (month 9). These samples will be used for SARS-CoV-2-specific antibody testing in a trial-affiliated laboratory, differentiating between antibodies resulting from a natural infection and antibodies resulting from COVID-19 vaccination (as vaccination will gradually be rolled out during the trial period). Baseline samples will only be analysed if the sample collected at the end of the learning phase is positive, or if the subject entered the study at the end of the recruitment period, and samples collected at the end of period 1 will only be analysed if the sample collected at the end of period 2 is positive. When subjects obtain a positive PCR/antigen or serology test result during the study, they will continue to be in the study but will be moved into a so-called COVID-positive mode in the Ava COVID-RED app. This means that they will no longer receive recommendations from the algorithms but can still contribute and track symptom and bracelet data. The primary analysis of the main objective will be executed using the data collected in period 2 (months 6 through 9). Within this period, serology tests (before and after period 2) and PCR/antigen tests (taken based on recommendations by the algorithms) will be used to determine if a subject was infected with SARS-CoV-2 or not. Within this same time period, it will be determined if the algorithms gave any recommendations for testing. The agreement between these quantities will be used to evaluate the performance of the algorithms and how these compare between the study conditions. RANDOMIZATION: All eligible subjects will be randomized using a stratified block randomization approach with an allocation ratio of 1:1 to one of two sequences (experimental condition followed by control condition or control condition followed by experimental condition). Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence, resulting in approximately equal numbers of high-risk and normal-risk individuals between the sequences. BLINDING (MASKING): In this study, subjects will be blinded to the study condition and randomization sequence. Relevant study staff and the device manufacturer will be aware of the assigned sequence. The subject will wear the Ava bracelet and complete the Daily Symptom Diary in the Ava COVID-RED app for the full duration of the study, and they will not know if the feedback they receive about their potential infection status will only be based on the data they entered in the Daily Symptom Diary within the Ava COVID-RED app or based on both the data from the Daily Symptom Diary and the Ava bracelet. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): A total of 20,000 subjects will be recruited and randomized 1:1 to either sequence 1 (experimental condition followed by control condition) or sequence 2 (control condition followed by experimental condition), taking into account their risk level. This results in approximately 6500 normal-risk and 3500 high-risk individuals per sequence. TRIAL STATUS: Protocol version: 3.0, dated May 3, 2021. Start of recruitment: February 19, 2021. End of recruitment: June 3, 2021. End of follow-up (estimated): November 2021 TRIAL REGISTRATION: The Netherlands Trial Register on the 18(th) of February, 2021 with number NL9320 (https://www.trialregister.nl/trial/9320) FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this letter serves as a summary of the key elements of the full protocol. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13063-021-05643-5.

Trials2021       LitCov and CORD-19
36A major outbreak of severe acute respiratory syndrome in Hong Kong  

N/A

N Engl J Med2003       CORD-19
37Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine  

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people in a worldwide pandemic. Safe and effective vaccines are needed urgently. METHODS: In an ongoing multinational, placebo-controlled, observer-blinded, pivotal efficacy trial, we randomly assigned persons 16 years of age or older in a 1:1 ratio to receive two doses, 21 days apart, of either placebo or the BNT162b2 vaccine candidate (30 μg per dose). BNT162b2 is a lipid nanoparticle–formulated, nucleoside-modified RNA vaccine that encodes a prefusion stabilized, membrane-anchored SARS-CoV-2 full-length spike protein. The primary end points were efficacy of the vaccine against laboratory-confirmed Covid-19 and safety. RESULTS: A total of 43,548 participants underwent randomization, of whom 43,448 received injections: 21,720 with BNT162b2 and 21,728 with placebo. There were 8 cases of Covid-19 with onset at least 7 days after the second dose among participants assigned to receive BNT162b2 and 162 cases among those assigned to placebo; BNT162b2 was 95% effective in preventing Covid-19 (95% credible interval, 90.3 to 97.6). Similar vaccine efficacy (generally 90 to 100%) was observed across subgroups defined by age, sex, race, ethnicity, baseline body-mass index, and the presence of coexisting conditions. Among 10 cases of severe Covid-19 with onset after the first dose, 9 occurred in placebo recipients and 1 in a BNT162b2 recipient. The safety profile of BNT162b2 was characterized by short-term, mild-to-moderate pain at the injection site, fatigue, and headache. The incidence of serious adverse events was low and was similar in the vaccine and placebo groups. CONCLUSIONS: A two-dose regimen of BNT162b2 conferred 95% protection against Covid-19 in persons 16 years of age or older. Safety over a median of 2 months was similar to that of other viral vaccines. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04368728.)

N Engl J Med2020       LitCov and CORD-19
38A SARS-CoV-2 Surveillance System in Sub-Saharan Africa: Modeling Study for Persistence and Transmission to Inform Policy  

BACKGROUND: Since the novel coronavirus emerged in late 2019, the scientific and public health community around the world have sought to better understand, surveil, treat, and prevent the disease, COVID-19. In sub-Saharan Africa (SSA), many countries responded aggressively and decisively with lockdown measures and border closures. Such actions may have helped prevent large outbreaks throughout much of the region, though there is substantial variation in caseloads and mortality between nations. Additionally, the health system infrastructure remains a concern throughout much of SSA, and the lockdown measures threaten to increase poverty and food insecurity for the subcontinent’s poorest residents. The lack of sufficient testing, asymptomatic infections, and poor reporting practices in many countries limit our understanding of the virus’s impact, creating a need for better and more accurate surveillance metrics that account for underreporting and data contamination. OBJECTIVE: The goal of this study is to improve infectious disease surveillance by complementing standardized metrics with new and decomposable surveillance metrics of COVID-19 that overcome data limitations and contamination inherent in public health surveillance systems. In addition to prevalence of observed daily and cumulative testing, testing positivity rates, morbidity, and mortality, we derived COVID-19 transmission in terms of speed, acceleration or deceleration, change in acceleration or deceleration (jerk), and 7-day transmission rate persistence, which explains where and how rapidly COVID-19 is transmitting and quantifies shifts in the rate of acceleration or deceleration to inform policies to mitigate and prevent COVID-19 and food insecurity in SSA. METHODS: We extracted 60 days of COVID-19 data from public health registries and employed an empirical difference equation to measure daily case numbers in 47 sub-Saharan countries as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: Kenya, Ghana, Nigeria, Ethiopia, and South Africa have the most observed cases of COVID-19, and the Seychelles, Eritrea, Mauritius, Comoros, and Burundi have the fewest. In contrast, the speed, acceleration, jerk, and 7-day persistence indicate rates of COVID-19 transmissions differ from observed cases. In September 2020, Cape Verde, Namibia, Eswatini, and South Africa had the highest speed of COVID-19 transmissions at 13.1, 7.1, 3.6, and 3 infections per 100,0000, respectively; Zimbabwe had an acceleration rate of transmission, while Zambia had the largest rate of deceleration this week compared to last week, referred to as a jerk. Finally, the 7-day persistence rate indicates the number of cases on September 15, 2020, which are a function of new infections from September 8, 2020, decreased in South Africa from 216.7 to 173.2 and Ethiopia from 136.7 to 106.3 per 100,000. The statistical approach was validated based on the regression results; they determined recent changes in the pattern of infection, and during the weeks of September 1-8 and September 9-15, there were substantial country differences in the evolution of the SSA pandemic. This change represents a decrease in the transmission model R value for that week and is consistent with a de-escalation in the pandemic for the sub-Saharan African continent in general. CONCLUSIONS: Standard surveillance metrics such as daily observed new COVID-19 cases or deaths are necessary but insufficient to mitigate and prevent COVID-19 transmission. Public health leaders also need to know where COVID-19 transmission rates are accelerating or decelerating, whether those rates increase or decrease over short time frames because the pandemic can quickly escalate, and how many cases today are a function of new infections 7 days ago. Even though SSA is home to some of the poorest countries in the world, development and population size are not necessarily predictive of COVID-19 transmission, meaning higher income countries like the United States can learn from African countries on how best to implement mitigation and prevention efforts. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/21955

J Med Internet Res2020       LitCov and CORD-19
39Factors Associated With Mental Health Disorders Among University Students in France Confined During the COVID-19 Pandemic  

IMPORTANCE: The coronavirus disease 2019 (COVID-19) pandemic and quarantine measures have raised concerns regarding their psychological effects on populations. Among the general population, university students appear to be particularly susceptible to experiencing mental health problems. OBJECTIVES: To measure the prevalence of self-reported mental health symptoms, to identify associated factors, and to assess care seeking among university students who experienced the COVID-19 quarantine in France. DESIGN, SETTING, AND PARTICIPANTS: This survey study collected data from April 17 to May 4, 2020, from 69 054 students living in France during the COVID-19 quarantine. All French universities were asked to send an email to their students asking them to complete an online questionnaire. The targeted population was approximately 1 600 000 students. EXPOSURE: Living in France during the COVID-19 quarantine. MAIN OUTCOMES AND MEASURES: The rates of self-reported suicidal thoughts, severe distress, stress, anxiety, and depression were assessed using the 22-item Impact of Events Scale–Revised, the 10-item Perceived Stress Scale, the 20-item State-Trait Anxiety Inventory (State subscale), and the 13-item Beck Depression Inventory, respectively. Covariates were sociodemographic characteristics, precariousness indicators (ie, loss of income or poor quality housing), health-related data, information on the social environment, and media consumption. Data pertaining to care seeking were also collected. Multivariable logistic regression analyses were performed to identify risk factors. RESULTS: A total of 69 054 students completed the survey (response rate, 4.3%). The median (interquartile range) age was 20 (18-22) years. The sample was mainly composed of women (50 251 [72.8%]) and first-year students (32 424 [47.0%]). The prevalence of suicidal thoughts, severe distress, high level of perceived stress, severe depression, and high level of anxiety were 11.4% (7891 students), 22.4% (15 463 students), 24.7% (17 093 students), 16.1% (11 133 students), and 27.5% (18 970 students), respectively, with 29 564 students (42.8%) reporting at least 1 outcome, among whom 3675 (12.4%) reported seeing a health professional. Among risk factors identified, reporting at least 1 mental health outcome was associated with female gender (odds ratio [OR], 2.10; 95% CI, 2.02-2.19; P < .001) or nonbinary gender (OR, 3.57; 95% CI, 2.99-4.27; P < .001), precariousness (loss of income: OR, 1.28; 95% CI, 1.22-1.33; P < .001; low-quality housing: OR, 2.30; 95% CI, 2.06-2.57; P < .001), history of psychiatric follow-up (OR, 3.28; 95% CI, 3.09-3.48; P < .001), symptoms compatible with COVID-19 (OR, 1.55; 95% CI, 1.49-1.61; P < .001), social isolation (weak sense of integration: OR, 3.63; 95% CI, 3.35-3.92; P < .001; low quality of social relations: OR, 2.62; 95% CI, 2.49-2.75; P < .001), and low quality of the information received (OR, 1.56; 95% CI, 1.49-1.64; P < .001). CONCLUSIONS AND RELEVANCE: The results of this survey study suggest a high prevalence of mental health issues among students who experienced quarantine, underlining the need to reinforce prevention, surveillance, and access to care.

JAMA Netw Open2020       LitCov and CORD-19
40A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster  

BACKGROUND: An ongoing outbreak of pneumonia associated with a novel coronavirus was reported in Wuhan city, Hubei province, China. Affected patients were geographically linked with a local wet market as a potential source. No data on person-to-person or nosocomial transmission have been published to date. METHODS: In this study, we report the epidemiological, clinical, laboratory, radiological, and microbiological findings of five patients in a family cluster who presented with unexplained pneumonia after returning to Shenzhen, Guangdong province, China, after a visit to Wuhan, and an additional family member who did not travel to Wuhan. Phylogenetic analysis of genetic sequences from these patients were done. FINDINGS: From Jan 10, 2020, we enrolled a family of six patients who travelled to Wuhan from Shenzhen between Dec 29, 2019 and Jan 4, 2020. Of six family members who travelled to Wuhan, five were identified as infected with the novel coronavirus. Additionally, one family member, who did not travel to Wuhan, became infected with the virus after several days of contact with four of the family members. None of the family members had contacts with Wuhan markets or animals, although two had visited a Wuhan hospital. Five family members (aged 36–66 years) presented with fever, upper or lower respiratory tract symptoms, or diarrhoea, or a combination of these 3–6 days after exposure. They presented to our hospital (The University of Hong Kong-Shenzhen Hospital, Shenzhen) 6–10 days after symptom onset. They and one asymptomatic child (aged 10 years) had radiological ground-glass lung opacities. Older patients (aged >60 years) had more systemic symptoms, extensive radiological ground-glass lung changes, lymphopenia, thrombocytopenia, and increased C-reactive protein and lactate dehydrogenase levels. The nasopharyngeal or throat swabs of these six patients were negative for known respiratory microbes by point-of-care multiplex RT-PCR, but five patients (four adults and the child) were RT-PCR positive for genes encoding the internal RNA-dependent RNA polymerase and surface Spike protein of this novel coronavirus, which were confirmed by Sanger sequencing. Phylogenetic analysis of these five patients' RT-PCR amplicons and two full genomes by next-generation sequencing showed that this is a novel coronavirus, which is closest to the bat severe acute respiatory syndrome (SARS)-related coronaviruses found in Chinese horseshoe bats. INTERPRETATION: Our findings are consistent with person-to-person transmission of this novel coronavirus in hospital and family settings, and the reports of infected travellers in other geographical regions. FUNDING: The Shaw Foundation Hong Kong, Michael Seak-Kan Tong, Respiratory Viral Research Foundation Limited, Hui Ming, Hui Hoy and Chow Sin Lan Charity Fund Limited, Marina Man-Wai Lee, the Hong Kong Hainan Commercial Association South China Microbiology Research Fund, Sanming Project of Medicine (Shenzhen), and High Level-Hospital Program (Guangdong Health Commission).

Lancet2020       LitCov and CORD-19
41Immediate Psychological Responses and Associated Factors during the Initial Stage of the 2019 COVID-19 Epidemic among the General Population in China  

Background: The 2019 coronavirus disease (COVID-19) epidemic is a public health emergency of international concern and poses a challenge to psychological resilience. Research data are needed to develop evidence-driven strategies to reduce adverse psychological impacts and psychiatric symptoms during the epidemic. The aim of this study was to survey the general public in China to better understand their levels of psychological impact, anxiety, depression, and stress during the initial stage of the COVID-19 outbreak. The data will be used for future reference. Methods: From 31 January to 2 February 2020, we conducted an online survey using snowball sampling techniques. The online survey collected information on demographic data, physical symptoms in the past 14 days, contact history with COVID-19, knowledge and concerns about COVID-19, precautionary measures against COVID-19, and additional information required with respect to COVID-19. Psychological impact was assessed by the Impact of Event Scale-Revised (IES-R), and mental health status was assessed by the Depression, Anxiety and Stress Scale (DASS-21). Results: This study included 1210 respondents from 194 cities in China. In total, 53.8% of respondents rated the psychological impact of the outbreak as moderate or severe; 16.5% reported moderate to severe depressive symptoms; 28.8% reported moderate to severe anxiety symptoms; and 8.1% reported moderate to severe stress levels. Most respondents spent 20–24 h per day at home (84.7%); were worried about their family members contracting COVID-19 (75.2%); and were satisfied with the amount of health information available (75.1%). Female gender, student status, specific physical symptoms (e.g., myalgia, dizziness, coryza), and poor self-rated health status were significantly associated with a greater psychological impact of the outbreak and higher levels of stress, anxiety, and depression (p < 0.05). Specific up-to-date and accurate health information (e.g., treatment, local outbreak situation) and particular precautionary measures (e.g., hand hygiene, wearing a mask) were associated with a lower psychological impact of the outbreak and lower levels of stress, anxiety, and depression (p < 0.05). Conclusions: During the initial phase of the COVID-19 outbreak in China, more than half of the respondents rated the psychological impact as moderate-to-severe, and about one-third reported moderate-to-severe anxiety. Our findings identify factors associated with a lower level of psychological impact and better mental health status that can be used to formulate psychological interventions to improve the mental health of vulnerable groups during the COVID-19 epidemic.

Int J Environ Res Public Healt2020       LitCov and CORD-19
42Impact of self-imposed prevention measures and short-term government-imposed social distancing on mitigating and delaying a COVID-19 epidemic: A modelling study  

BACKGROUND: The coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread to nearly every country in the world since it first emerged in China in December 2019. Many countries have implemented social distancing as a measure to “flatten the curve” of the ongoing epidemics. Evaluation of the impact of government-imposed social distancing and of other measures to control further spread of COVID-19 is urgent, especially because of the large societal and economic impact of the former. The aim of this study was to compare the individual and combined effectiveness of self-imposed prevention measures and of short-term government-imposed social distancing in mitigating, delaying, or preventing a COVID-19 epidemic. METHODS AND FINDINGS: We developed a deterministic compartmental transmission model of SARS-CoV-2 in a population stratified by disease status (susceptible, exposed, infectious with mild or severe disease, diagnosed, and recovered) and disease awareness status (aware and unaware) due to the spread of COVID-19. Self-imposed measures were assumed to be taken by disease-aware individuals and included handwashing, mask-wearing, and social distancing. Government-imposed social distancing reduced the contact rate of individuals irrespective of their disease or awareness status. The model was parameterized using current best estimates of key epidemiological parameters from COVID-19 clinical studies. The model outcomes included the peak number of diagnoses, attack rate, and time until the peak number of diagnoses. For fast awareness spread in the population, self-imposed measures can significantly reduce the attack rate and diminish and postpone the peak number of diagnoses. We estimate that a large epidemic can be prevented if the efficacy of these measures exceeds 50%. For slow awareness spread, self-imposed measures reduce the peak number of diagnoses and attack rate but do not affect the timing of the peak. Early implementation of short-term government-imposed social distancing alone is estimated to delay (by at most 7 months for a 3-month intervention) but not to reduce the peak. The delay can be even longer and the height of the peak can be additionally reduced if this intervention is combined with self-imposed measures that are continued after government-imposed social distancing has been lifted. Our analyses are limited in that they do not account for stochasticity, demographics, heterogeneities in contact patterns or mixing, spatial effects, imperfect isolation of individuals with severe disease, and reinfection with COVID-19. CONCLUSIONS: Our results suggest that information dissemination about COVID-19, which causes individual adoption of handwashing, mask-wearing, and social distancing, can be an effective strategy to mitigate and delay the epidemic. Early initiated short-term government-imposed social distancing can buy time for healthcare systems to prepare for an increasing COVID-19 burden. We stress the importance of disease awareness in controlling the ongoing epidemic and recommend that, in addition to policies on social distancing, governments and public health institutions mobilize people to adopt self-imposed measures with proven efficacy in order to successfully tackle COVID-19.

PLoS Med2020       LitCov and CORD-19
43Dexamethasone in Hospitalized Patients with Covid-19  

BACKGROUND: Coronavirus disease 2019 (Covid-19) is associated with diffuse lung damage. Glucocorticoids may modulate inflammation-mediated lung injury and thereby reduce progression to respiratory failure and death. METHODS: In this controlled, open-label trial comparing a range of possible treatments in patients who were hospitalized with Covid-19, we randomly assigned patients to receive oral or intravenous dexamethasone (at a dose of 6 mg once daily) for up to 10 days or to receive usual care alone. The primary outcome was 28-day mortality. Here, we report the preliminary results of this comparison. RESULTS: A total of 2104 patients were assigned to receive dexamethasone and 4321 to receive usual care. Overall, 482 patients (22.9%) in the dexamethasone group and 1110 patients (25.7%) in the usual care group died within 28 days after randomization (age-adjusted rate ratio, 0.83; 95% confidence interval [CI], 0.75 to 0.93; P<0.001). The proportional and absolute between-group differences in mortality varied considerably according to the level of respiratory support that the patients were receiving at the time of randomization. In the dexamethasone group, the incidence of death was lower than that in the usual care group among patients receiving invasive mechanical ventilation (29.3% vs. 41.4%; rate ratio, 0.64; 95% CI, 0.51 to 0.81) and among those receiving oxygen without invasive mechanical ventilation (23.3% vs. 26.2%; rate ratio, 0.82; 95% CI, 0.72 to 0.94) but not among those who were receiving no respiratory support at randomization (17.8% vs. 14.0%; rate ratio, 1.19; 95% CI, 0.91 to 1.55). CONCLUSIONS: In patients hospitalized with Covid-19, the use of dexamethasone resulted in lower 28-day mortality among those who were receiving either invasive mechanical ventilation or oxygen alone at randomization but not among those receiving no respiratory support. (Funded by the Medical Research Council and National Institute for Health Research and others; RECOVERY ClinicalTrials.gov number, NCT04381936; ISRCTN number, 50189673.)

N Engl J Med2020       LitCov and CORD-19
44Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1  

N Engl J Med2020       LitCov and CORD-19
45A new coronavirus associated with human respiratory disease in China  

Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health(1–3). Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing(4) of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here ‘WH-Human 1’ coronavirus (and has also been referred to as ‘2019-nCoV’). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China(5). This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans.

Nature2020       LitCov and CORD-19
46A prospective, randomized, single-blinded, crossover trial to investigate the effect of a wearable device in addition to a daily symptom diary for the remote early detection of SARS-CoV-2 infections (COVID-RED): a structured summary of a study protocol for a randomized controlled trial  

OBJECTIVES: It is currently thought that most—but not all—individuals infected with SARS-CoV-2 develop symptoms, but that the infectious period starts on average two days before the first overt symptoms appear. It is estimated that pre- and asymptomatic individuals are responsible for more than half of all transmissions. By detecting infected individuals before they have overt symptoms, wearable devices could potentially and significantly reduce the proportion of transmissions by pre-symptomatic individuals. the algorithm using Ava bracelet data when coupled with self-reported Daily Symptom Diary data (Wearable + Symptom Data Algo; experimental condition); the algorithm using self-reported Daily Symptom Diary data alone (Symptom Only Algo; control condition). In addition, we will determine which of the two algorithms has superior performance characteristics for detecting SARS-CoV-2 infection including early or asymptomatic infection as confirmed by SARS-CoV-2 virus testing. TRIAL DESIGN: The trial is a randomized, single-blinded, two-period, two-sequence crossover trial. All subjects will participate in an initial Learning Phase (varying from 2 weeks to 3 months depending on enrolment date), followed by two contiguous 3-month test phases, Period 1 and Period 2. Each subject will undergo the experimental condition (the Wearable + Symptom Data Algo) in one of these periods and the control condition (Symptom Only Algo) in the other period. The order will be randomly assigned, resulting in subjects being allocated 1:1 to either Sequence 1 (experimental condition first) or Sequence 2 (control condition first). Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence. PARTICIPANTS: The trial will be conducted in the Netherlands. A target of 20,000 subjects will be enrolled. Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence. This results in approximately 6,500 normal-risk individuals and 3,500 high-risk individuals per sequence. Subjects will be recruited from previously studied cohorts as well as via public campaigns and social media. All data for this study will be collected remotely through the Ava COVID-RED app, the Ava bracelet, surveys in the COVID-RED web portal, and self-sampling serology and PCR kits. During recruitment, subjects will be invited to visit the COVID-RED web portal (www.covid-red.eu). After successfully completing the enrolment questionnaire, meeting eligibility criteria and indicating interest in joining the study, subjects will receive the subject information sheet and informed consent form. Subjects can enrol in COVID-RED if they comply with the following inclusion and exclusion criteria. Resident of the Netherlands. At least 18 years old. Informed consent provided (electronic). Willing to adhere to the study procedures described in the protocol. Must have a smartphone that runs at least Android 8.0 or iOS 13.0 operating systems and is active for the duration of the study (in the case of a change of mobile number, study team should be notified). Be able to read, understand and write Dutch. Previous positive SARS-CoV-2 test result (confirmed either through PCR/antigen or antibody tests; self-reported). Previously received a vaccine developed specifically for COVID-19 or in possession of an appointment for vaccination in the near future (self-reported). Current suspected (e.g., waiting for test result) COVID-19 infection or symptoms of a COVID-19 infection (self-reported). Participating in any other COVID-19 clinical drug, vaccine, or medical device trial (self-reported). Electronic implanted device (such as a pacemaker; self-reported). Pregnant at time of informed consent (self-reported). Suffering from cholinergic urticaria (per the Ava bracelet’s User Manual; self-reported). Staff involved in the management or conduct of this study. INTERVENTION AND COMPARATOR: All subjects will be instructed to complete the Daily Symptom Diary in the Ava COVID-RED app daily, wear their Ava bracelet each night and synchronise it with the app each day for the entire period of study participation. Provided with wearable sensor and/or self-reported symptom data within the last 24 hours, the Ava COVID-RED app’s underlying algorithms will provide subjects with a real-time indicator of their overall health and well-being. Subjects will see one of three messages, notifying them that: no seeming deviations in symptoms and/or physiological parameters have been detected; some changes in symptoms and/or physiological parameters have been detected and they should self-isolate; or alerting them that deviations in their symptoms and/or physiological parameters could be suggestive of a potential COVID-19 infection and to seek additional testing. We will assess intraperson performance of the algorithms in the experimental condition (Wearable + Symptom Data Algo) and control conditions (Symptom Only Algo). MAIN OUTCOMES: The trial will evaluate the use and performance of the Ava COVID-RED app and Ava bracelet, which uses sensors to measure breathing rate, pulse rate, skin temperature, and heart rate variability for the purpose of early and asymptomatic detection and monitoring of SARS-CoV-2 in general and high-risk populations. Using laboratory-confirmed SARS-CoV-2 infections (detected via serology tests, PCR tests and/or antigen tests) as the gold standard, we will determine the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for each of the following two algorithms to detect first-time SARS-CoV-2 infection including early or asymptomatic infection: the algorithm using Ava Bracelet data when coupled with the self-reported Daily Symptom Diary data, and the algorithm using self-reported Daily Symptom Diary data alone. In addition, we will determine which of the two algorithms has superior performance characteristics for detecting SARS-CoV-2 infection including early or asymptomatic infection as confirmed by SARS-CoV-2 virus testing. The protocol contains an additional seventeen secondary outcomes which address infection incidence rates, health resource utilization, symptoms reported by SARS-CoV-2 infected participants, and the rate of breakthrough and asymptomatic SARS-CoV-2 infections among individuals vaccinated against COVID-19. PCR or antigen testing will occur when the subject receives a notification from the algorithm to seek additional testing. Subjects will be advised to get tested via the national testing programme, and report the testing result in the Ava COVID-RED app and a survey. If they cannot obtain a test via the national testing programme, they will receive a nasal swab self-sampling kit at home, and the sample will be tested by PCR in a trial-affiliated laboratory. In addition, all subjects will be asked to take a capillary blood sample at home at baseline (Month 0), and at the end of the Learning Phase (Month 3), Period 1 (Month 6) and Period 2 (Month 9). These samples will be used for SARS-CoV-2-specific antibody testing in a trial-affiliated laboratory, differentiating between antibodies resulting from a natural infection and antibodies resulting from COVID-19 vaccination (as vaccination will gradually be rolled out during the trial period). Baseline samples will only be analysed if the sample collected at the end of the Learning Phase is positive, and samples collected at the end of Period 1 will only be analysed if the sample collected at the end of Period 2 is positive. When subjects obtain a positive PCR/antigen or serology test result during the study, they will continue to be in the study but will be moved into a so-called “COVID-positive” mode in the Ava COVID-RED app. This means that they will no longer receive recommendations from the algorithms but can still contribute and track symptom and bracelet data. The primary analysis of the main objective will be executed using data collected in Period 2 (Month 6 through 9). Within this period, serology tests (before and after Period 2) and PCR/antigen tests (taken based on recommendations by the algorithms) will be used to determine if a subject was infected with SARS-CoV-2 or not. Within this same time period, it will be determined if the algorithms gave any recommendations for testing. The agreement between these quantities will be used to evaluate the performance of the algorithms and how these compare between the study conditions. RANDOMISATION: All eligible subjects will be randomized using a stratified block randomization approach with an allocation ratio of 1:1 to one of two sequences (experimental condition followed by control condition or control condition followed by experimental condition). Based on demographics, medical history and/or profession, each subject will be stratified at baseline into a high-risk and normal-risk group within each sequence, resulting in equal numbers of high-risk and normal-risk individuals between the sequences. BLINDING (MASKING): In this study, subjects will be blinded as to study condition and randomization sequence. Relevant study staff and the device manufacturer will be aware of the assigned sequence. The subject will wear the Ava bracelet and complete the Daily Symptom Diary in the Ava COVID-RED app for the full duration of the study, and they will not know if the feedback they receive about their potential infection status will only be based on data they entered in the Daily Symptom Diary within the Ava COVID-RED app or based on both the data from the Daily Symptom Diary and the Ava bracelet. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): 20,000 subjects will be recruited and randomized 1:1 to either Sequence 1 (experimental condition followed by control condition) or Sequence 2 (control condition followed by experimental condition), taking into account their risk level. This results in approximately 6,500 normal-risk and 3,500 high-risk individuals per sequence. TRIAL STATUS: Protocol version: 1.2, dated January 22(nd), 2021 Start of recruitment: February 22(nd), 2021 End of recruitment (estimated): April 2021 End of follow-up (estimated): December 2021 TRIAL REGISTRATION: The trial has been registered at the Netherlands Trial Register on the 18(th) of February, 2021 with number NL9320 (https://www.trialregister.nl/trial/9320) FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13063-021-05241-5.

Trials2021       LitCov and CORD-19
47Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study  

BACKGROUND: We investigated the temporal progression of the clinical, radiological, and virological changes in a community outbreak of severe acute respiratory syndrome (SARS). METHODS: We followed up 75 patients for 3 weeks managed with a standard treatment protocol of ribavirin and corticosteroids, and assessed the pattern of clinical disease, viral load, risk factors for poor clinical outcome, and the usefulness of virological diagnostic methods. FINDINGS: Fever and pneumonia initially improved but 64 (85%) patients developed recurrent fever after a mean of 8.9 (SD 3.1) days, 55 (73%) had watery diarrhoea after 7.5 (2.3) days, 60 (80%) had radiological worsening after 7.4 (2.2) days, and respiratory symptoms worsened in 34 (45%) after 8.6 (3.0) days. In 34 (45%) patients, improvement of initial pulmonary lesions was associated with appearance of new radiological lesions at other sites. Nine (12%) patients developed spontaneous pneumomediastinum and 15 (20%) developed acute respiratory distress syndrome (ARDS) in week 3. Quantitative reverse-transcriptase (RT) PCR of nasopharyngeal aspirates in 14 patients (four with ARDS) showed peak viral load at day 10, and at day 15 a load lower than at admission. Age and chronic hepatitis B virus infection treated with lamivudine were independent significant risk factors for progression to ARDS (p=0.001). SARS-associated coronavirus in faeces was seen on RT-PCR in 65 (97%) of 67 patients at day 14. The mean time to seroconversion was 20 days. INTERPRETATION: The consistent clinical progression, shifting radiological infiltrates, and an inverted V viral-load profile suggest that worsening in week 2 is unrelated to uncontrolled viral replication but may be related to immunopathological damage. Published online May 9, 2003 http://image.thelancet.com/extras/03art4432web.pdf

Lancet2003       CORD-19
48SARS-CoV-2 and coronavirus disease-2019: The epidemic and the challenges  

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; previously provisionally named 2019 novel coronavirus or 2019-nCoV) disease (COVID-19) in China at the end of 2019 has caused a large global outbreak and is a major public health issue. As of 11 February 2020, data from the World Health Organization (WHO) have shown that more than 43 000 confirmed cases have been identified in 28 countries/regions, with >99% of cases being detected in China. On 30 January 2020, the WHO declared COVID-19 as the sixth public health emergency of international concern. SARS-CoV-2 is closely related to two bat-derived severe acute respiratory syndrome-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21. It is spread by human-to-human transmission via droplets or direct contact, and infection has been estimated to have mean incubation period of 6.4 days and a basic reproduction number of 2.24–3.58. Among patients with pneumonia caused by SARS-CoV-2 (novel coronavirus pneumonia or Wuhan pneumonia), fever was the most common symptom, followed by cough. Bilateral lung involvement with ground-glass opacity was the most common finding from computed tomography images of the chest. The one case of SARS-CoV-2 pneumonia in the USA is responding well to remdesivir, which is now undergoing a clinical trial in China. Currently, controlling infection to prevent the spread of SARS-CoV-2 is the primary intervention being used. However, public health authorities should keep monitoring the situation closely, as the more we can learn about this novel virus and its associated outbreak, the better we can respond.

Int J Antimicrob Agents2020       LitCov and CORD-19
49Factors Associated With Mental Health Outcomes Among Healthcare Workers Exposed to COVID-19  

IMPORTANCE: Health care workers exposed to coronavirus disease 2019 (COVID-19) could be psychologically stressed. OBJECTIVE: To assess the magnitude of mental health outcomes and associated factors among health care workers treating patients exposed to COVID-19 in China. DESIGN, SETTINGS, AND PARTICIPANTS: This cross-sectional, survey-based, region-stratified study collected demographic data and mental health measurements from 1257 health care workers in 34 hospitals from January 29, 2020, to February 3, 2020, in China. Health care workers in hospitals equipped with fever clinics or wards for patients with COVID-19 were eligible. MAIN OUTCOMES AND MEASURES: The degree of symptoms of depression, anxiety, insomnia, and distress was assessed by the Chinese versions of the 9-item Patient Health Questionnaire, the 7-item Generalized Anxiety Disorder scale, the 7-item Insomnia Severity Index, and the 22-item Impact of Event Scale–Revised, respectively. Multivariable logistic regression analysis was performed to identify factors associated with mental health outcomes. RESULTS: A total of 1257 of 1830 contacted individuals completed the survey, with a participation rate of 68.7%. A total of 813 (64.7%) were aged 26 to 40 years, and 964 (76.7%) were women. Of all participants, 764 (60.8%) were nurses, and 493 (39.2%) were physicians; 760 (60.5%) worked in hospitals in Wuhan, and 522 (41.5%) were frontline health care workers. A considerable proportion of participants reported symptoms of depression (634 [50.4%]), anxiety (560 [44.6%]), insomnia (427 [34.0%]), and distress (899 [71.5%]). Nurses, women, frontline health care workers, and those working in Wuhan, China, reported more severe degrees of all measurements of mental health symptoms than other health care workers (eg, median [IQR] Patient Health Questionnaire scores among physicians vs nurses: 4.0 [1.0-7.0] vs 5.0 [2.0-8.0]; P = .007; median [interquartile range {IQR}] Generalized Anxiety Disorder scale scores among men vs women: 2.0 [0-6.0] vs 4.0 [1.0-7.0]; P < .001; median [IQR] Insomnia Severity Index scores among frontline vs second-line workers: 6.0 [2.0-11.0] vs 4.0 [1.0-8.0]; P < .001; median [IQR] Impact of Event Scale–Revised scores among those in Wuhan vs those in Hubei outside Wuhan and those outside Hubei: 21.0 [8.5-34.5] vs 18.0 [6.0-28.0] in Hubei outside Wuhan and 15.0 [4.0-26.0] outside Hubei; P < .001). Multivariable logistic regression analysis showed participants from outside Hubei province were associated with lower risk of experiencing symptoms of distress compared with those in Wuhan (odds ratio [OR], 0.62; 95% CI, 0.43-0.88; P = .008). Frontline health care workers engaged in direct diagnosis, treatment, and care of patients with COVID-19 were associated with a higher risk of symptoms of depression (OR, 1.52; 95% CI, 1.11-2.09; P = .01), anxiety (OR, 1.57; 95% CI, 1.22-2.02; P < .001), insomnia (OR, 2.97; 95% CI, 1.92-4.60; P < .001), and distress (OR, 1.60; 95% CI, 1.25-2.04; P < .001). CONCLUSIONS AND RELEVANCE: In this survey of heath care workers in hospitals equipped with fever clinics or wards for patients with COVID-19 in Wuhan and other regions in China, participants reported experiencing psychological burden, especially nurses, women, those in Wuhan, and frontline health care workers directly engaged in the diagnosis, treatment, and care for patients with COVID-19.

JAMA Netw Open2020       LitCov and CORD-19
50Mental health problems and correlates among 746 217 college students during the COVID-19 outbreak in China  

AIMS: Coronavirus disease 2019 (COVID-19) pandemic is a major public health concern all over the world. Little is known about the impact of COVID-19 pandemic on mental health in the general population. This study aimed to assess the mental health problems and associated factors among a large sample of college students during the COVID-19 outbreak in China. METHODS: This cross-sectional and nation-wide survey of college students was conducted in China from 3 to 10 February 2020. A self-administered questionnaire was used to assess psychosocial factors, COVID-19 epidemic related factors and mental health problems. Acute stress, depressive and anxiety symptoms were measured by the Chinese versions of the impact of event scale-6, Patient Health Questionnaire-9 and Generalized Anxiety Disorder-7, respectively. Univariate and hierarchical logistic regression analyses were performed to examine factors associated with mental health problems. RESULTS: Among 821 218 students who participated in the survey, 746 217 (90.9%) were included for the analysis. In total, 414 604 (55.6%) of the students were female. About 45% of the participants had mental health problems. The prevalence rates of probable acute stress, depressive and anxiety symptoms were 34.9%, 21.1% and 11.0%, respectively. COVID-19 epidemic factors that were associated with increased risk of mental health problems were having relatives or friends being infected (adjusted odds ratio = 1.72–2.33). Students with exposure to media coverage of the COVID-19 ≥3 h/day were 2.13 times more likely than students with media exposure <1 h/day to have acute stress symptoms. Individuals with low perceived social support were 4.84–5.98 times more likely than individuals with high perceived social support to have anxiety and depressive symptoms. In addition, senior year and prior mental health problems were also significantly associated with anxiety or/and depressive symptoms. CONCLUSIONS: In this large-scale survey of college students in China, acute stress, anxiety and depressive symptoms are prevalent during the COVID-19 pandemic. Multiple epidemic and psychosocial factors, such as family members being infected, massive media exposure, low social support, senior year and prior mental health problems were associated with increased risk of mental health problems. Psychosocial support and mental health services should be provided to those students at risk.

Epidemiol Psychiatr Sci2020       LitCov and CORD-19

(1) COVID-19 Open Research Dataset (CORD-19). 2020. Version 2022-06-02. Retrieved from https://ai2-semanticscholar-cord-19.s3-us-west-2.amazonaws.com/historical_releases.html. Accessed 2022-06-05. doi:10.5281/zenodo.3715506
(2) Chen Q, Allot A, & Lu Z. (2020) Keep up with the latest coronavirus research, Nature 579:193 and Chen Q, Allot A, Lu Z. LitCovid: an open database of COVID-19 literature. Nucleic Acids Research. 2020. (version 2023-01-10)
(3) Currently tweets of June 23rd to June 29th 2022 have been considered.

This service is provided "as is", without any warranties of any kind.